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1 Introduction

1.1 Mathematical Optimization

A mathematical optimization problem, or just optimization problem, has the form

min f(x)
s.t. ci(x) = 0, i = 1, . . . ,m1.

ci(x) ≤ 0, i = m1 + 1, . . . ,m.
(1.1)

Here the vector x = (x1, . . . , xn) is the optimization variable of the problem, the function f : Rn → R is the
object function, the function ci : Rn → ,i = 1, c . . . , n are the constraint functions (equality constraints and
inequality constraints).

Applications include Operational research (scheduling, supply chain, transportation), Image processing (ma-
trix completion, compressed sensing), Statistics (deep learning, maximal likely-hood estimate), Finance (risk
control), Biology, Control ...

1.2 Constrained and Unconstrained Optimization

If we have m = 0 constraints, then (1.1) is an unconstrained optimization problem. Otherwise it is a
constrained optimization problem.

1.3 Feasible Region

In mathematical optimization, a feasible region, feasible set, search space, or solution space is the set of all
possible points that satisfy the problem’s constraints, i.e.,

X = {x ∈ Rn | ci(x) ≤ 0, i = 1, ...,m, ci(x) = 0, i = m+ 1, ...,m+ l}

If X is empty, then (1.1) is infeasible, otherwise it is feasible.

For unconstrained optimization problem, the feasible region is X = R.

1.4 Optimal value

Notice that in X , it is possible that the minimum or maximal value of the object function f may not exist.
However, the infimum and supremum should always exists. Thus, when the maximal value or the minimal
value does not exist, we will replace min(max) with inf(sup).

p∗ = inf{f(x) | x ∈ X}

Special cases:

• p∗ =∞ if problem is infeasible.

• p∗ = −∞ if problem is unbounded.

1.5 Global and local minimizer

DEFINITION 1.1. (Open Ball & Closure)

The open ball of radius δ around x̄ is Bδ(x̄) = {x ∈ Rn, ∥x− x̄∥ < δ}. The closure of Bδ(x̄) is Bδ(x̄) = {x ∈
Rn, ∥x− x̄∥ ≤ δ}
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DEFINITION 1.2. (Minimizer)

Consider f : X → R. A point x∗ is

• a global minimizer for f on X if f(x∗) ≤ f(x), ∀x ∈ X

• a strict global minimizer for f on X if f(x∗) < f(x), ∀x ∈ X , x ̸= x∗

• a local minimzer for f on X if there exists δ > 0 such that f(x∗) ≤ f(x), ∀x ∈ Bδ(x
∗) ∩ X .

• a strict local minimizer for f on X if there exists δ > 0 such that f(x∗) < f(x), ∀x ∈ Bδ(x
∗)∩X , x ̸= x∗.

1.6 Example

As a simple example, consider the problem

min (x1 − 2)2 + (x2 − 1)2

s.t. x2
1 − x2 ≤ 0

x1 + x2 ≤ 2
(1.2)

Figure 1: global minimizer

1.7 Continuous versus discrete optimization

In continuous optimization problems, variables are allowed to vary continuously (real numbers). In discrete
optimization problems, the variables could be integers, binary variables or more abstract objects such as
permutations of an order set. The key feature for discrete optimization problem is that feasible region is a
finite set.

Continuous optimization problems are normally easier to solve because we can use information from a
particular point x to study neighborhood points of x. In discrete optimization, the behaviour can change
significantly from point to point.

1.8 Stochastic and deterministic optimization

Randomness appears in the problem formulation (random objective functions or random constraints).

Not covered in this course, we focus deterministic optimization problems.
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1.9 Optimization algorithms

Optimization algorithms are iterative. They begin with an initial value of the variable x and generate a
sequence of improved estimate. Hopefully they terminate in finitely many steps, such that either the last
point is an optimal solution. or the limit of the sequence is an optimal solution.

Given an initial value x0, denote the sequence of points generated by iterative algorithms as {xk}. If {xk}
satisfy limk→∞ ||xk − x∗|| = 0, and x∗ is a local(global) minimizer, then we say the algorithm (sequence)
converges to a local(global) optimal solution.

1.9.1 Convergence rate

Let {xk} be a sequence in Rn that converges to x∗, we have the following definition of the convergence rate

DEFINITION 1.3. (Rate of Convergence (Quotient))

• The convergence is Q-sublinear if for k sufficiently large

lim
k→∞

∥∥xk+1 − x∗
∥∥

∥xk − x∗∥
= 1.

• The convergence is Q-linear if for k sufficiently large

lim
k→∞

∥∥xk+1 − x∗
∥∥

∥xk − x∗∥
≤ a, a ∈ (0, 1).

• The convergence is Q-superlinear if for k sufficiently large

lim
k→∞

∥∥xk+1 − x∗
∥∥

∥xk − x∗∥
= 0.

• The convergence is Q-quadratic if for k sufficiently large

lim
k→∞

∥∥xk+1 − x∗
∥∥

∥xk − x∗∥2
≤ a, a > 0.

1.10 Convexity

The optimization problem (1.1) is called a linear problem if the objective and constraint functions f0, ..., fm
are linear, i.e., it satisfies

fi(αx+ βy) = αfi(x) + βfi(x) (1.3)

for all x, y ∈ Rn and all α, β ∈ R. If the optimization is not linear, it is called a nonlinear program which
will be the main subject of this course.

An important class of optimization problem is called convex optimization problems. A convex optimization
problem is one in which the objective and constraint functions are convex, which means they satisfy the
inequality

fi(αx+ βy) ≤ αfi(x) + βfi(y) (1.4)

for all x, y ∈ dom fi and all α, β ∈ R with α+ β = 1, α ≥ 0, β ≥ 0.
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Figure 2: Comparison of different convergence rates

Convexity is more general than linearity. Any linear problem is a convex problem, but a convex problem is
not necessarily linear (nonlinear).
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2 Linear Algebra

2.1 Vector and Matrix Norm

DEFINITION 2.1. (Norm)

A norm ∥·∥ assigns a scalar ∥x∥ to every x ∈ Rn such that

• ∥x∥ ≥ 0,∀x ∈ Rn and ∥x∥ = 0 ⇐⇒ x = 0.

• ∥c · x∥ = |c| · ∥x∥ for all c ∈ R, x ∈ Rn.

• ∥x+ y∥ ≤ ∥x∥+ ∥y∥.

Examples of norm

1-norm: ∥x∥1 =
n∑

i=1

|xi|

2-norm: ∥x∥2 =

√
n∑

i=1

|xi|2

p-norm or ℓp norm: ∥x∥p = (
n∑

i=1

|xi|p)
1
p .

Infinite norm: ∥x∥∞ = max |xi|

THEOREM 2.2. (Schwartz Inequality)

For any x, y ∈ Rn, we have |xT y| ≤ ∥x∥2 ∥y∥2

Proof. |xT y| = ∥x∥2 ∥y∥2 cos(θ) ≤ ∥x∥2 ∥y∥2

THEOREM 2.3. (Pythagorean)

If x, y ∈ R are orthogonal, then ∥x+ y∥22 = ∥x∥22 + ∥y∥
2
2

2.1.1 Induced Norm

DEFINITION 2.4. (Induced Norm)

Given a vector norm ∥·∥, the induced matrix norm assigns a scalar ∥A∥ to every A ∈ Rn×n with

A = max
∥x∥=1

∥Ax∥

.
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Proposition 2.5. ∥A∥2 = max
∥x∥2=1

∥Ax∥2 = max
∥x∥=∥y∥=1

|yTAx|

Proof. Apply Schwartz Inequality to |yTAx|, we get max
∥x∥2=1

∥Ax∥2 ≥ max
∥x∥=∥y∥=1

|yTAx|

For the other direction, from the definition of induced norm, we know there exists x such that ∥x∥2 = 1 and
∥Ax∥2 = ∥A∥2 .

Let y = Ax
∥Ax∥2

, then

|yTAx| = |x
TATAx|
∥Ax∥2

=
∥Ax∥22
| ∥Ax∥2

= ∥Ax∥2 = ∥A∥2 .

Therefore,

max
∥x∥2=1

∥Ax∥2 ≤ max
∥x∥=∥y∥=1

|yTAx|

Proposition 2.6. ∥A∥2 =
∥∥AT

∥∥
2
.

Proof. Swap x and y in Proposition (2.5).

Lemma 2.7. Let A ∈ Rn×n and x ∈ Rn, for any induced norm ∥·∥, then

∥Ax∥ ≤ ∥A∥ ∥x∥ .

Proposition 2.8. Let A ∈ Rn×n, then

∥A∥22 =
∥∥AAT

∥∥
2
=

∥∥ATA
∥∥
2
.

2.2 Eigenvalues

DEFINITION 2.9. (Eigenvalue and Eigenvector)

The characteristic polynomial ϕ of a matrix A ∈ Rn×n is defined as

ϕ(λ) = det(A− λI).

The roots of ϕ are eigenvalues of A. The eigenvector x corresponding to an eigenvalue λ is {x ∈ Rn|Ax = λx}.
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Proposition 2.10. Given a matrix A ∈ Rn×n, we have the following:

1. A is singular ⇐⇒ A has a zero eigenvalue.

2. If S ∈ Rn×n is nonsingular and B = SAS−1, then A,B has the same eigenvalues.

3. If the eigenvalues of A are λ1, ..., λn, then

• the eigenvalues of A+ cI are λ1 + c, ..., λn + c.

• the eigenvalues of Ak are λk
1 , ..., λ

k
n.

• the eigenvalues of A−1 are λ1, ..., λn.

• the eigenvalues of AT is are also λ1, ..., λn.

• the algebraic multiplicity of an eigenvalue λ is greater or equal to the geometric multiplicity.

DEFINITION 2.11. (Spectral Radius)

The spectral radius ρ(A) of A ∈ Rn×n is

max{|λ| | λ is eigenvalue of A}

Proposition 2.12. For any induced norm ∥ · ∥, we have ρ(A) ≤ ∥Ak∥ 1
k .

Proof. Let λ be any eigenvalue of A, x is the corresponding eigenvector.∥∥Ak
∥∥ = max

∥y∥=1

∥∥Aky
∥∥ = max

∥y∥≠0

1

∥y∥
∥Ay∥∥∥Ak

∥∥ ≥ 1

∥y∥
∥∥Aky

∥∥
=

1

∥y∥
∥A1 ·A2 · · ·Ay∥

=
1

∥y∥
∥∥λky

∥∥
=

∣∣λk
∣∣

⇒
∥∥Ak

∥∥ 1
k ≥ P (A)

Proposition 2.13. limk→∞
∥∥Ak

∥∥ 1
k = ρ(A)
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2.3 Symmetric Matrices

Proposition 2.14. Let A ∈ Rn×n be symmetric, then

1. Its eigenvalues are all real.

2. For each eigenvalue, its algebraic multiplicity is equal to its geometric multiplicity.

3. Its eigenvectors are n mutually orthogonal nonzero real vectors.

4. A can be decomposed as A =
n∑

i=1

λixix
T
i where xi is the corresponding eigenvector for eigenvalue λi

and ∥x∥2 = 1.

Proposition 2.15. Let A ∈ Rn×n be symmetric, then ∥A∥2 = ρ(A).

Proof. We know that ρ(A) ≤ ∥A∥2 from Proposition (2.12), so it remains to show ∥A∥2 ≤ ρ(A).

Let λ1, ..., λn be the n eigenvalues of A (counting multiplicity). Let {xi : i = 1, ..., n} be the corresponding
n mutually orthogonal eigenvectors of A which are normalized, i.e., ||xi||2 = 1 (why does A have such
eigenvectors ?).

Let y be any vector in Rn such that ∥y∥2 = 1, then we can write y as y =
∑n

i=1 aixi for some ai ∈ R
(
∑

a2i = 1 why?). Then

∥Ay∥22 =
∥∥∥A∑

aixi

∥∥∥2
2

=
∥∥∥∑ aiAxi

∥∥∥2
2

=
∥∥∥∑ aiλixi

∥∥∥2
2

=
∑

a2iλ
2
i ∥xi∥22 (by Pythagorean Theorem)

=
∑

a2iλ
2
i

≤ ρ(A)2 (since
∑

a2i = 1)

(2.1)

Therefore we have ∥Ay∥2 ≤ ρ(A) for any ∥Ay∥2 = 1. Hence,

∥A∥2 = max
∥y∥2=1

∥Ay∥2 ≤ ρ(A). (2.2)

Proposition 2.16. Let A ∈ Rn be symmetric, then
∥∥Ak

∥∥
2
= ∥A∥k2 ,∀k = 1, ..., n.

Proposition 2.17. Let A ∈ Rn, then
∥∥A−1

∥∥
2
=

1

λmin
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2.4 Positive Semidefinite Matrix

DEFINITION 2.18. (Positive Definite and Positive Semidefinite Matrix)

A symmetric matrix A ∈ Rn×n is positive semidefinite (PSD) if xTAx ≥ 0,∀x ∈ Rn.

It is positive definite (PD) if xTAx > 0,∀x ∈ Rn, x ̸= 0.

Proposition 2.19.

• A symmetric matrix A ∈ Rn×n is positive semidefinite if and only if all its eigenvalues are non-negative.

• A symmetric matrix A ∈ Rn×n is positive definite if and only if all its eigenvalues are positive.

Proposition 2.20. A symmetric matrix A ∈ Rn×n is positive semidefinite if and only if A = BBT for some
matrix B ∈ Rn×r of full column rank where r = rank(A).

2.5 Singular Value Decomposition

Let A ∈ Rm×n be a matrix, the singular value of A is defined as the nonnegative square root of eigenvalue
of AAT .

Proposition 2.21. (Singular Value Decomposition)

Let A ∈ Rm× be a matrix of rank r, then
A = UΣV T

where

• Σm×n is the unique rectangular matrix with r diagonal entries consisting of singular values of A in a
nonincreasing order.

• Um×m and Vn×n are orthogonal matrices.

• The columns of V form an orthonormal basis of Rn consisting of eigenvalues of ATA. These columns
are called the right singular vectors of A.

• The columns of U form an orthonormal basis of Rm consisting of eigenvectors of AAT . These columns
are called the left singular vectors of A.

• If A is positive semidefinite(symmetric), each singular value is equal to its eigenvalue. If in addition
A is positive definite, then U = V (eigenvalue decomposition and singular value decomposition of a
positive definite matrix is the same.

12



3 Convexity

3.1 Introduction

The optimization problem (1.1) is called a linear problem if the objective and constraint functions f0, ..., fm
are linear, i.e., it satisfies

fi(αx+ βy) = αfi(x) + βfi(x) (3.1)

for all x, y ∈ Rn and all α, β ∈ R. If the optimization is not linear, it is called a nonlinear program which
will be the main subject of this course.

An important class of optimization problem is called convex optimization problems.

A convex optimization problem is one in which the objective and constraint functions are convex, which
means they satisfy the inequality

fi(αx+ βy) ≤ αfi(x) + βfi(y) (3.2)

for all x, y ∈ Rn and all α, β ∈ R with α+ β = 1, α ≥ 0, β ≥ 0.

Convexity is more general than linearity. Any linear problem is a convex problem, but a convex problem is
not necessarily linear (nonlinear).

3.2 Basic Definitions

DEFINITION 3.1. (Affine Set)

A set A is said to be an affine set if for any two distinct points, the line passing through these points lie in
the set A. i.e.,

x1, x2 ∈ A⇒ θx1 + (1− θ)x2 ∈ A, ∀θ ∈ R

DEFINITION 3.2. (Convex Set)

A set C is said to be a convex set if for any two distinct points, the line segment passing through these
points lie in the set C. i.e.,

x1, x2 ∈ C ⇒ θx1 + (1− θ)x2 ∈ C, ∀θ ∈ [0, 1].

Figure 3: Example - Convex and non-convex sets
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Example. Bδ(x̄) = {x− ∥x− x̄∥ ≤ δ}. Let x1, x2 ∈ Bδ(x̄).

∥θx1 + (1− θ)x2 − x̄∥ ≤ δ

∥θ(x1 − x̄) + (1− θ)(x2 − x̄)∥ ≤ ∥θ(x1 − x̄)∥+ ∥(1− θ)(x2 − x̄)∥
≤ θδ + (1− θ)δ = δ

Proposition 3.3. The closed and open balls are convex

DEFINITION 3.4. (Affine Combination)

Given a finite number of points x1, x2, . . . , xn in a real vector space Rm, a convex combination of these points
is a point of the form

x = θ1x1 + θ2x2 + · · ·+ θnxn

where the real numbers θi satisfy θ1 + θ2 + · · ·+ θn = 1..

DEFINITION 3.5. (Convex Combination)

Given a finite number of points x1, x2, . . . , xn in a real vector space Rm, a convex combination of these points
is a point of the form

x = θ1x1 + θ2x2 + · · ·+ θnxn

where the real numbers θi satisfy θi ≥ 0 and θ1 + θ2 + · · ·+ θn = 1..

DEFINITION 3.6. (Affine Hull)

Let C be a set in Rn, then the affine hull of C, denoted as aff C, is defined as

{x | x = θ1x1 + θ2x2 + · · ·+ θnxn}

where θi satisfy θ1 + θ2 + · · ·+ θn = 1..

DEFINITION 3.7. (Convex Hull)

Let C be a set in Rn, then the convex hull of C, denoted as covC, is defined as

{x | x = θ1x1 + θ2x2 + · · ·+ θnxn}

where θi satisfy θ1 + θ2 + · · ·+ θn = 1. and θi ≥ 0.

14



Figure 4: Example - Convex hull

Proposition 3.8. The following holds:

1. For any collection of {Ci : i ∈ I} of convex sets, their intersection ∩i∈ICi is convex.

2. The vector (Minkowski) sum {x+ y : x ∈ C1, y ∈ C2} of two convex sets C1, C2 is convex.

3. The image of a convex set under an affine transformation is a convex set.

Proof. Exercise

THEOREM 3.9. (Hyperplane Separation Theorem)

Suppose C and D are nonempty disjoint convex sets, i.e., C ∩ D ̸= ∅. Then there exist a ̸= 0 such that
aTx ≤ b for all x ∈ C and aTx ≥ b for all x ∈ D.

Figure 5: Example - Hyperplane Separation Theorem
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3.3 Convex Function

A Minkowski sum is defined as:
{x+ y : x ∈ C1, y ∈ C2}

DEFINITION 3.10. (Convex Function)

A function f : Rn → R is said to be convex if

1. its domain dom f is a convex set.

2. f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y),∀ x, y ∈ dom f, ∀ 0 ≤ λ ≤ 1

A function is said to be strictly convex if a strict inequality (<) holds as well.

We say f is concave if −f is convex, and strictly concave if −f is strictly convex.

Figure 6: Example - Convexity

Example 1.
y = x2 is convex,

y = −x2 is not convex (concave)

y = −x3 not convex, not a concave.

DEFINITION 3.11. (Level set)

The α− level set of a function f : Rn → R is defined as

Cα = {x ∈ dom f | f(x) = α}

DEFINITION 3.12. (Sublevel Set)

The α− sublevel set of a function f : Rn → R is defined as

Cα = {x ∈ dom f | f(x) ≤ α, α ∈ R}

16



Figure 7: Example - Sublevel set

DEFINITION 3.13. (Epigraph)

The graph of a function f : Rn → R is defined as

{(x, f(x)) | x ∈ dom f}

which is a subset of Rn. The epigraph of a function f : Rn → R is defined as

epi f = {(x, t) | x ∈ dom f, f(x) ≤ t}

Figure 8: Example - Epigraph

Proposition 3.14. The following holds:

1. If f : Rn → R is convex, then its sublevel sets are convex as well. (the converse is not true)

2. A function f : Rn → R is convex if and only if its epigraph is a convex set

17



Proof. From the definition of convexity.

1. Let x, y ∈ Cα, then
f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

= λα+ (1− λ)α = α

Hence λx+ (1− λ)y ∈ Cα, its sublevel set is convex.

2. (⇒) Let (x1, t1) and (x2, t2) ∈ epi f . Then

λ(x1, t1) + (1− λ)(x2, t2) = (λx1 + (1− λ)x2, λt1 + (1− λ)t2)

Since f((λx1 + (1− λx2)) ≤ λf(x1) + (1− λ)f(x2) ≤ λt1 + (1− λ)t2, we have

(λx1 + (1− λ)x2, λt1 + (1− λ)t2) ∈ epi f.

(⇐) Now assume epi f is convex, then consider

λ(x1, f(x1)) + (1− λ)(x2, f(x2)) = (λx1 + (1− λ)x2, λf(x1) + (1− λ)f(x2) ∈ epi f.

Therefore, f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2)

Proposition 3.15.

1. Any affine function is convex.

2. If f is a convex function, then λf is also a convex function.

3. The sum of two convex function is also convex.

4. The maximum of two convex function is also convex.

Lemma 3.16. Any vector norm is convex.

Proof.
∥λx+ (1− λ)y∥ ≤ ∥λ(x)∥+ ∥(1− λ)y∥

≤ λ ∥x∥+ (1− λ) ∥y∥ λ ≥ 0, (1− λ) ≥ 0

Proposition 3.17. (Pointwise Maximum/Supremum of Convex Functions) The pointwise maxi-
mum of m convex functions f1, ..., fm is convex

fmax(x) := max
1≤i≤m

fi(x).

The pointwise supremum of a family of convex functions index by a set I is convex

fsup(x) := sup
i∈I

fi(x)
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Proof. For any 0 ≤ θ ≤ 1 and any x, y ∈ R

fsup(θx+ (1− θ)y) = sup
i∈I

fi(θx+ (1− θ)y)

≤ sup
i∈I

θfi(x) + (1− θ)yfi(y)

≤ θ sup
i∈I

fi(x) + (1− θ) sup
j∈I

fj(x)

= θfsup(x) + (1− θ)fsup(y).

Proposition 3.18. Any induced norm is convex.

Proof.
∥A∥ = max

i∈I, I={∥i∥=1}
∥Ai∥

Fix i,
∥(λ(A+ (1− λ)B)i∥ ≤ λ ∥Ai∥+ (1− λ) ∥Bi∥ .

THEOREM 3.19. Consider an optimization problem

min f(x)

s.t. x ∈ Ω

where f : Rn → R is a convex function and Ω is a convex set. Then any local optimum is also a global
optimum.

Proof. Let x̄ ∈ Ω be a local minimizer, then there exists ϵ > 0 such that

f(x̄) ≤ f(x), ∀x ∈ Bϵ(x̄) ∩ Ω

Now suppose x̄ is not global minimum, then ∃z ∈ ω with f(z) < f(x̄).

But because of convexity of Ω, we have

λx̄+ (1− λ)z ∈ Ω, ∀λ ∈ [0, 1]

By convexity of f we have
f(λx̄+ (1− λ)z) ≤ λf(x̄) + (1− λ)f(z)

< λf(x̄) + (1− λ)f(x̄)

= f(x̄)

But as λ→ 1, λx̄+(1−λ)z → x̄, so λx̄+(1−λ)z ∈ Bϵ(x̄)∩Ω for some λ close to 1, which is a contradiction
of the local optimality of x̄.
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4 Multivariate Calculus

DEFINITION 4.1. (Ck Class)

A function f : D → R is called a Ck class or Ck-smooth function (f ∈ Ck), over D, if all its kth derivatives
are continuous over D (Usually assume D is open).

Note a function is differentiable at a point implies it must be continuous at the point.

Example. f :=

{
0 x ≤ 0

x2 x ≥ 0
. Here f ′′ is not defined at x = 0 (f ′ is not differentiable on 0), so it belongs

to C1 but not in C2.

y = |x|3 is in C2 but not in C3.

DEFINITION 4.2. (Gradient)

Let f ∈ C1 : Rn → R. Its gradient ∇f ∈ C0 : Rn → R⋉ is given by

∇f(x) =


∂f
∂x1

(x)
...

∂f
∂xn

(x)



DEFINITION 4.3. (Hessian)

Let f ∈ C2 : Rn → R. Its Hessian ∇2f ∈ C1 : Rn → Rn×n is given by

∇2f(x) =


∂2f
∂x2

1
· · · ∂2f

∂x1∂xn

... . . .
...

∂2f
∂xn∂x1

· · · ∂2f
∂x2

n



Note the partial derivatives commute if f ∈ C2 (Schwarz’s theorem or Clairaut’s theorem).

THEOREM 4.4. (Taylor Theorem for Univariable Functions)

Let f : R→ R be a function that has n+1 continuous derivatives in some neighbourhood U of x = a. Then
for any x ∈ U ,

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + · · · f

(n)(a)

n!
(x− a)n +Rn,a(x),

where Rn,a(x) =
f (n+1)(c)

(n+ 1)!
(x− a)(n+1), c is between x and a.
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THEOREM 4.5. (Taylor Theorem for Multivariate Functions)

• (First order) Let f : Rn → R be differentiable. Then

f(x+ h) = f(x) + hT∇f(x) + ϕ(h).

where lim
h→0

ϕ(h)

∥h∥
= 0.

• (First order explicit form) Let f ∈ C1 : Rn → R. Then

f(x+ h) = f(x) + hT∇f(x+ th), 0 < t < 1.

• (Second order) Let f : Rn → R be twice differentiable. Then

f(x+ h) = f(x) + hT∇f(x) + 1

2
hT∇2f(x)h+ ϕ(h),

where ϕ(h) =
1

2
hT∇2f(x+ λh)h, 0 ≤ λ ≤ 1 with lim

h→0

ϕ(h)

∥h∥2
= 0.

• (Second order explicit form) Let f ∈ C2 : Rn → R. Then

f(x+ h) = f(x) + hT∇f(x) + 1

2
hT∇2f(x+ th)h, 0 < t < 1

DEFINITION 4.6. (Directional Derivative)

The directional derivative of f in the direction of h is

∇hf(x) = lim
α→0

f(x+ αh)− f(x)

α
.

THEOREM 4.7. Let f ∈ C1, then ∇hf = hT∇f .

Proof.

∇hf = lim
α→0

f(x+ αh)− f(x)

α

= lim
α→0

f(x) + αhT∇f(x) + ϕ(αh)− f(x)

α

= hT∇f(x) + lim
α→0

ϕ(αh)

α

= hT∇f(x) + lim
∥αh∥→0

ϕ(αh)

∥αh∥
∥h∥

= hT∇f(x)

21



Proposition 4.8. Let f : Rn → R be differentiable and dom f is convex. Then f is convex if and only if

∀x, y ∈ C, f(y) ≥ f(x) + (y − x)T∇f(x).

Proof. Assume f is a convex function, then for any x, y ∈ dom f and t ∈ [0, 1], we have

tf(y) + (1− t)f(x) ≥ f(x+ t(y − x)).

Divided by t, we have

f(y)− f(x) ≥ f(x+ t(y − x))− f(x)

t

Let t→ 0, then

f(y)− f(x) ≥ lim
t→0

f(x+ t(y − x))− f(x)

t
= ∇f(x)T (y − x)

For the other direction, for any x, y ∈ dom f and any t ∈ [0, 1], define z = tx + (1 − t)y (because dom f is
convex). Then

f(x) ≥ f(z) +∇f(z)T (x− z) (1)

f(y) ≥ f(z) +∇f(z)T (y − z) (2)

t times (1) + (1− t) times (2):

tf(x) + (1− t)f(y) ≥ f(z) + 0 = f(tx+ (1− t)y).

which is exactly the definition of a convex function.

Proposition 4.9. Let f : Rn → R, f ∈ C2, and dom f is a convex set. Then

• ∇2f(x) ⪰ 0,∀x ∈ dom f if and only if f is convex function.

• if ∇2f(x) ≻ 0,∀x ∈ dom f , then f is strictly convex.

Proof. First assume that ∇2f(x) ⪰̸ 0, i.e., ∃v ̸= 0 ∈ Rn such that vT∇2f(x)v < 0. By Taylor expansion,
we have

f(x+ tv) = f(x) + t∇2f(x)v +
t2

2
vT∇2f(x)v +O(t2)

where O(t2) is a higher order term than t2. Then divided by t2, we have

f(x+ tv)− f(x)− t∇f(x)T v
t2

=
1

2
vT∇2f(x)v +O(1)

Hence as t→ 0,
f(x+ tv)− f(x)− t∇f(x)T v

t2
< 0, which is a contradiction to Proposition (4.8).

Now assume ∀x ∈ dom f,∇2f(x) ⪰ 0. Then for any x, y ∈ dom f, x ̸= y, by Taylor expansion (Second order
explicit form), we have

f(y) = f(x) +∇f(x)T (y − x) +
1

2
(y − x)T∇2f(x+ t(y − x))(y − x), for some t ∈ (0, 1)
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Then since dom f is convex, x+ t(y − x) ∈ dom f , so ∇2f(x+ t(y − x)) ⪰ 0. Therefore,

1

2
(y − x)T∇2f(x+ t(y − x))(y − x) ≥ 0.

Hence,
f(y) ≥ f(x) +∇f(x)T (y − x),

which implies f(x) is a convex function. In addition, if ∇2f(x) ≻ 0,∀x ∈ dom f , then

f(y) > f(x) +∇f(x)T (y − x).

Hence f is strictly convex.
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5 Optimality Conditions for Unconstrained Optimization Prob-
lem

DEFINITION 5.1. (Critical/Stationary Points)

All points x such that ∇f(x) = 0 are called critical or stationary points

THEOREM 5.2. (First Order Necessary Conditions for Local Optimality)

Let f ∈ C1 : Rn → R. If x∗ is a local minimizer, then ∇f(x∗) = 0.

Proof. For any h ∈ Rn, consder the taylor expansion at x = x∗

f(x∗ + αh) = f(x∗) + αhT∇f(x∗) +O(α)

and divide by α,
f(x∗ + αh)− f(x∗)

α
= hT∇f(x∗) +O(1)

Because x∗ is a local minimizer, we have

lim
α→0+

f(x∗ + αh)− f(x∗)

α
= hT∇f(x∗) ≥ 0

lim
α→0−

f(x∗ + αh)− f(x∗)

α
= hT∇f(x∗) ≤ 0

Therefore, hT∇f(x∗) = 0 for any h, which implies ∇f(x∗) = 0.

THEOREM 5.3. (Second Order Necessary Conditions for Local Optimality)

Let f ∈ C2 : Rn → R. If x∗ is a local minimizer, then ∇f(x∗) = 0 and ∇2f(x∗) is a PSD matrix.

Proof. Suppose on the contrary that ∇2f(x∗) ⪰̸ 0, i.e., ∇2f(x∗) has negative eigenvalues. Let d be the
eigenvector corresponding to a negative eigenvalue λ.

Consider the second order Taylor expansion of f(x) at x∗, since x∗ is a local minimizer, we have ∇f(x∗) = 0.
Hence

f(x∗ + d)− f(x∗)

∥d∥2
=

1

2

dT

∥d∥
∇2f(x∗)

d

∥d∥
+O(1)

Since
d

∥d∥
is a unit vector, we have

f(x∗ + d)− f(x∗)

∥d∥2
=

1

2
λ+O(1)

When ∥d∥ is sufficiently small, we have f(x∗ + d) < f(x∗), which is a contradiction of x∗ being a local
minimizer.
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THEOREM 5.4. (Second Order Sufficient Conditions for Local Optimality)

Let f ∈ C2 : Rn → R. If ∇f(x∗) = 0 and ∇2f(x∗) is a PD matrix, then x∗ is a strict local minimizer.

Proof. Follow the proof the previous theorem, assume ∇2f(x∗) ≻ 0, then for any ∥d∥2 ̸= 0, we have

dT∇2f(x∗)d ≥ λmin ∥d∥22
dT

∥d∥2
∇2f(x∗)

d

∥d∥2
≥ λmin ∥d∥22

(for any 0 ̸= d ∈ Rn, d can be expressed as d =
n∑

i=1

vi where vi is the i-th eigenvector of ∇2f(x∗), and vi are

orthogonal to each other). By Taylor’s expansion,

f(x∗ + d) = f(x∗) +
1

2
dT∇2f(x)d+ dT∇f(x) + ϕ(d).

Hence,
f(x∗ + d)− f(x∗)

∥d∥22
≥ 1

2
λmin +O(1).

Therefore f(x∗ + d) > f(x∗) when ∥d∥2 is sufficiently small.

THEOREM 5.5. [Stationary point of convex function] Let f : Rn → R be differentiable and convex. If x∗

is a stationary point, then x∗ is also a global minimizer.

Proof. Since f is convex, we have f(y) ≥ f(x∗)+∇f(x∗)T (y−x∗) for any y. Since x∗ is a stationary point,
∇f(x∗) = 0. Therefore f(y) ≥ f(x) for any y.

Remark 5.6. In Theorem 5.3 and Theorem 5.4, we require f to be C2 instead of twice differentiable
(weaker), that is because we need the partial derivatives to commute, so that the Hessian is a symmetric
matrix (Recall Schwarz’s theorem or Clairaut’s theorem).

∇f(x∗) = 0 and ∇2f(x∗) is PD ⇒

(1) x∗ is a strict local minimizer.

(2) x∗ is a local minimizer

(3)

{
∇f(x∗) = 0

∇2f(x∗) ⪰ 0

Converse of (1), (2), (3) are all false. Counterexamples:

(1) f(x) = x4 at x∗ = 0, ∇2f(x) = 12x2 = 0
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(2) f(x) = 1 at x∗ = 0. minimizer but not strict.

(3) f(x) = x3 at x∗ = 0. ∇f(x∗) = 0

5.1 Existence of optimal solution

DEFINITION 5.7. (Bounded Set, Closed Set, Compact Set)

A set S is bounded if S ⊆ Bδ(0) for some δ.

A set S is closed if for any sequence x1, x2, ... ∈ S such that lim
i→∞

xi exists, then lim
i→∞

xi ∈ S.

A set S is compact if it is bounded and closed.

THEOREM 5.8. (Weierstrass Extreme Value Theorem)

Every continuous function on a compact set S attains its extreme value at some x ∈ S. That is, there exist
x∗ ∈ S such that f(x∗) = sup

S
(f) or inf

S
(f)

THEOREM 5.9. If f is continuous, then its sublevel sets are closed.

Proof. Let Cα = {x |f(x) ≤ α} be a sublevel set. Let {xk} ⊂ Cα be a sequence that lim
k→∞

(xk) = x∗. Then

f(x∗) = f( lim
k→∞

xk) = lim
k→∞

f(xk) ≤ α.

Hence x∗ ∈ Cα and Cα is closed.

THEOREM 5.10. If f : Rn → R is continuous and has at least one bounded nonempty sublevel set, then
f has a global optimizer.

Proof. Let Cα = {x|f(x) ≤ α} be a bounded sublevel set. Since f is continuous, it must be closed, therefore
it must be compact. By Weierstrass Extreme Value Theorem, f must have a global optimizer x∗ over Cα.
Now for any x /∈ Cα, we must have f(x) > α ≥ f(x∗). Hence x∗ is a global optimizer over Rn.

Example. Functions without global minimizer:

1. Affine function f(x) = Ax+ b

2. f(x) = ex.
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DEFINITION 5.11. (Coercive Function)

A function f : Rn → R is said to be coercive if for every sequence {xk} ⊂ Rn with ∥xk∥ → ∞, it must be
the case that f(xk)→∞.
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Figure 9: Coercive and not coercive

THEOREM 5.12. (Coercivity and Compactness)

Let f : Rn → R be continuous on Rn. Then f is coercive if and only if all its sublevel sets are compact (or
bounded).

Proof. We first show that the coercivity of f implies compactness of the sets {x ∈ Rn|f(x) ≤ α}. We begin
by noting that the continuity of f implies the closeness of the sets {x ∈ Rn|f(x) ≤ α}. Thus, it remains only
to show that any set of the form {x ∈ Rn|f(x) ≤ α} is bounded. We show this by contradiction. Suppose
to the contrary that there is an α such that the set S = {x ∈ Rn|f(x) ≤ α} is unbounded. Then there must
exist a sequence {xk} ⊂ S with ||xk|| → ∞. But then, by the coercivity of f , we must also have f(xk)→∞.
This contradicts the fact that f(xk) ≤ α for all k = 1, 2, .... Therefore the set S must be bounded.

Let us now assume that each of the sets {x|f(x) ≤ α} is bounded and let {xk} ⊂ Rn be such that ||xk|| → ∞.
Let us suppose that there exists a subsequence of the integers J ⊂ N such that the set {f(xk)}J is bounded
above. Then there exists α ∈ Rn such that {xk}J ⊂ {x|f(x) ≤ α}. But this cannot be the case since each of
the sets {x|f(x) ≤ α} is bounded while every subsequence of the sequence {xk} is unbounded by definition.
Therefore, the set {f(xk)}J cannot be bounded, and so the sequence contains no bounded subsequence, i.e.
f(xk)→∞.

Proposition 5.13. Let f : Rn → R be continuous on Rn, If f is coercive, then f has at least one global
minimizer.

Example. Let A ∈ Rm×n with rank(A) = n, then f(x) = ∥Ax− b∥2 is coercive.

Solution: By triangle inequality, ∥Ax− b∥2 ≥ ∥Ax∥ − ∥b∥ =
√
xTATAx− ∥b∥2.

Since rank(ATA) = rank(A) = n, we know ATA is a PD matrix. Similarly as the proof of Theorem 5.4, we
know √

xTATAx ≥
√

λmin ∥x∥22 =
√
λmin ∥x∥2 .

Therefore f(x)→∞ as ∥x∥2 →∞
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THEOREM 5.14. Let f : Rn → R be a convex function, a local minimizer of f is also a global minimizer.
If f is strictly convex, then there is at most one global minimizer.

5.2 Application to Least Squares problem

Given m points x(1), ..., x(m) ∈ Rn, and m points y(1), ..., y(m) ∈ R. The goal is to find a line y = aTx ( more
specifically, find the coefficients a ∈ Rn) that best approximate the given data (See figure 10).

Figure 10: Least Squares

We minimize the following function

f(a) =

m∑
i=1

((x(i))Ta− y(i))2 = (Xa− y)T (Xa− y) = ∥Xa− y∥22

The linear least squares problem is the following unconstrained minimization problem

min
a∈Rn

∥Xa− y∥22 (5.1)

where X ∈ Rm×n is a matrix of the form:

X =

 (x(1))T

...
(x(m))T


and y ∈ Rm is a vector of the form:

y =

 y(1)

...
y(m)



THEOREM 5.15.

If rank(X) = n, then it has one unique global minimizer.
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Proof. Recall
f(a) = ∥Xa− y∥22

= aTXTXa− yTXa− aTXT y + yT y

= aTXTXa− 2yTXa+ yT y

Since rank(X) = n, by Proposition 5.13, it is coercive and coercivity implies it has at least one global
minimizer. Since XTX is a n × n matrix, and rank(XTX) = rank(X) = n, it must be a positive definite
matrix. Therefore it is strictly convex, which implies the global minimizer is unique.

Remark 5.16. Note if we want to find a line that does not go through the origin, i.e., a line of the form
y = aTx+ c. We can rewrite the line equation as y = [aT , c][xT , 1]T . Therefore we can simply add 1’s to the
matrix X such that the least squares problem has the same formulation:

min
a∈Rn, c∈R

∥∥X̄[aT , c]T − y
∥∥2
2

(5.2)

where X̄ ∈ Rm×n is a matrix of the form:

X̄ =

 (x(1))T 1
...

...
(x(m))T 1


and y ∈ Rm is a vector of the form:

y =

 y(1)

...
y(m)
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6 Unconstrained Quadratic Optimization

6.1 Quadratic Function

DEFINITION 6.1. (Quadratic Function)

A quadratic function is a function of the form q(x) = xTAx+ bTx+ c for any A ∈ Rn, b ∈ R, c ∈ R.

WLOG we can assume that A is symmetric.

Lemma 6.2. Let A ∈ Rn and let G =
1

2
(A+AT ). Then

q(x) = xTGx+ bx+ c, ∀x ∈ Rn.

Proof. xTAx =
xTAx

2
+

xTAx

2
=

xTAx

2
+

xTATx

2
=

1

2
xT

(
A+AT

)
x = xTGx

6.2 Matrix calculus

Let A ∈ Rm×n, b ∈ Rn, x ∈ Rn, then

1.
∂(xT )

∂x
= I,

2.
∂(xT b)

∂x
= b,

3.
∂(xTAT )

∂x
= AT .

Similarly,

1.
∂(x)

∂xT
= I,

2.
∂(bTx)

∂xT
= bT ,

3.
∂(Ax)

∂xT
= A.

Lemma 6.3. (Chain Rule) Let g ∈ Rm, h ∈ Rn. Then

∂f(g, h)

∂x
=

∂(g(x)T )

∂x

∂f(g, h)

∂g
+

∂(h(x)T )

∂x

∂f(g, h)

∂h
.
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Lemma 6.4. Let A ∈ Rn. Then
∂(xTAx)

∂x
= (A+AT )x.

Proof. Let g(x) = x and h(x) = Ax. Then

∂(xTAx)

∂x
=

∂xT

∂x

∂xTAx

∂x
+

∂((Ax)T )

dx

∂xTAx

∂Ax

= Ax+
∂(xTAT )

dx

∂((Ax)Tx)

∂Ax

= Ax+ATx

The gradient: ∇xTAx =
∂xTAx

∂x
.

The Hessian: ∇2xTAx =
∂2xTAx

∂x∂xT
=

∂(Ax+ATx)

∂xT
= A+AT .

DEFINITION 6.5. (Generalized Inverse)

A matrix A− ∈ Rn×m is a generalized inverse of matrix A ∈ Rm×n if AA−A = A.

Lemma 6.6. Let b ∈ Range(A), then x̄ = A−b is a solution of the linear system Ax = b.

Lemma 6.7. Let A ∈ Rm×n, then for any b ∈ Rn, b can be uniquely written as b = y + z where y ∈
Range(AT ) and z = Null(A).

Proof. Assume dim(Range(AT )) = n1 and dim(Null(A)) = n2. Then by the Rank-Nullity Theorem,
n1 + n2 = n. Let a1, ..., an1

be an orthogonal basis of Range(AT ) and e1, ..., en2
be an orthogonal basis of

Null(A). From the definition we know that Range(AT ) ⊥ Null(A), then it is clear that ⟨ai, ej⟩ = 0 for any
1 ≤ i ≤ n1, 1 ≤ j ≤ n2. It then implies a1, ..., an1 , e1, ..., en2 must be linearly independent. (Why? prove it
using the orthogonality of the basis)

Hence {a1, ..., an1 , e1, ..., en2} spans the whole Rn and we can write b as b =
∑

ciai +
∑

djej , then simply
let y =

∑
ciai and z =

∑
djej . The uniqueness comes from the linear independence of the basis.

THEOREM 6.8. Let q(x) = xTAx+ bTx+ c and A ∈ Rn be symmetric and b ∈ R, c ∈ R.

• If A is positive definite, then q(x) has a unique global minimizer x∗ = −1

2
A−1b.
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• If A is positive semidefinite and b ∈ Range(A), then q(x) has global minimizer x∗ such that Ax∗ = −1

2
b.

A particular solution is x∗ = A−b.

• For all the other cases, q(x) is unbounded, i.e., q(x) = −∞ for some ∥x∥ → ∞.

Proof.

1. Since ∇f(x∗) = 0 and ∇2f(x) = 2A ≻ 0, by proposition 4.9, f must be strictly convex. Then by the
second order sufficient condition, x∗ is a local minimizer. Since f is convex, any local minimzer is a
global minimizer. Since f is strictly convex, x∗ must be a unique global minimizer.

2. Now assume A is positive semidefinite but not positive definite. Then let x∗ be a stationary point such
that 2Ax∗ + b = 0, we will show that for any y ∈ Rn, q(x∗) ≤ q(y).

q(y) = q(y − x∗ + x∗)

= (y − x∗ + x∗)TA(y − x∗ + x∗) + bT (y − x∗ + x∗) + c

= (y − x∗)TA(y − x∗) + 2(y − x∗)TA(x∗) + (x∗)TA(x∗) + bT (y − x∗) + bTx∗ + c

= (y − x∗)TA(y − x∗)− (y − x∗)T b+ (x∗)TA(x∗) + bT (y − x∗) + bTx∗ + c

= (y − x∗)TA(y − x∗) + (x∗)TA(x∗) + bTx∗ + c

= (y − x∗)TA(y − x∗) + q(x∗)

Since A is PSD, (y − x∗)TA(y − x∗) ≥ 0. Hence q(y) ≥ q(x∗).

3. For the other cases, note b ∈ Range(A) in both case 1 and case 2. So there are two cases left: (a)
b /∈ Range(A). (b) b ∈ Range(A) but A is not PSD.

For part (a), by lemma 6.7, b can be uniquely written as

b = y + z,

where y ∈ Range(AT ) and z ∈ Null(A). Since b /∈ Range(AT ) = Range(A), it implies z ̸= 0. Now let
x = λz, then

q(λz) = λ2zTAz + λ(y + z)T z + c = 0 + 0 + λzT z + c.

Therefore, q(λx)→ −∞ as λ→ −∞.

For part (b), since A is not PSD, there exists some v ̸= 0 such that vTAv < 0. Let x = λv, then

q(λv) = λ2vTAv + λbT v + c.

Since vTAv < 0, it implies q(λv) → −∞ as λ → ∞ (The quadratic term λ2 grows faster than the
linear term λ).
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7 Equivalent Norms

DEFINITION 7.1. (Equivalent Norms)

We say that two norms ∥·∥F and ∥·∥G on Rn are equivalent if there exists some constant C1 > 0, C2 > 0
such that

C1 ∥x∥G ≤ ∥x∥F ≤ C2 ∥x∥G .

Lemma 7.2. Given two equivalent norms ∥·∥F and ∥·∥G, we have the following:

1. lim
k→∞

∥xk∥F →∞ if and only if lim
k→∞

∥xk∥G →∞.

2. lim
k→∞

∥xl∥F → 0 if and only if lim
k→∞

∥xk∥G → 0.

THEOREM 7.3. Any two norms on a finite dimensional vector space are equivalent.

Proof. It suffices to prove it in the case the finite-dimensional space is Rn and ∥·∥G is the 2-norm. Let ei
be the unit vector such that the ith element is 1, and all the other elements are zero. Then {e1, ..., en} is a
basis of Rn and we can write x ∈ Rn as x =

∑
i

xiei where xi ∈ R.

Let µ = max1≤i≤n ∥ei∥F , then

∥x∥F =

∥∥∥∥∥∑
i

xiei

∥∥∥∥∥
F

≤
∑
i

|xi| ∥ei∥F (Triangle Inequality of norms)

≤ µ
∑
i

|xi|

≤ µ
√
n ∥x∥2 (Cauchy-Schwartz Inequality to the vectors |x| and

∑
i ei).

Thus
∥x∥F − ∥y∥F ≤ ∥x− y∥F ≤ µ

√
n ∥x− y∥2 ,

so ∥·∥F is continuous. Hence ∥·∥F restricted to the unit sphere {x : ∥x∥2 = 1} attains its minimum at some
point p (Weierstrass Extreme Value Theorem) and ∥p∥F ≤ ∞. We then claim that

∥x∥F ≥ ∥p∥F ∥x∥2 .

When x = 0, this is true.

When x ̸= 0, then

∥x∥F = ∥x∥2

∥∥∥∥ x

∥x∥2

∥∥∥∥
F

≥ ∥x∥2 ∥p∥F ,

since p is the minimizer in the unit sphere, and x
∥x∥2

is also in the unit sphere. Hence,

C1 ∥x∥2 ≤ ∥x∥F ≤ C2 ∥x∥2 ,

where C1 = ∥p∥F and C2 = µ
√
n.
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8 Algorithms for Unconstrained Optimization

There are mainly two classes of algorithms for solving unconstrained optimization:

• Line search type algorithms

• Trust region type algorithms

8.1 Line Search Algorithm

General framework for Line Search Algorithm:

DEFINITION 8.1. (Line Search Step)

(1) Choose a search direction dk.

(2) Choose a step size αk ≥ 0.

(3) Update xk+1 = xk + αkd
k.

8.1.1 Descent Direction

How to choose a search direction? Usually we take the descent direction.

DEFINITION 8.2. (Descent Direction)

Let f : Rn → R be differentiable and xk ∈ Rn be such that ∇f(xk) ̸= 0. Then dk is called a descent direction
if ∇f(xk)T dk < 0.

Lemma 8.3. Let f : Rn → R be differentiable and dk be a direction such that ∇f(xk)T dk < 0, then
f(xk + ϵdk) ≤ f(xk) for sufficiently small ϵ.

Proof. Using Taylor Theorem.

8.1.2 Steepest Descent

If we choose the direction dk to be the negative of the gradient. Then locally it is the ”steepest” direction
in the following sense.

THEOREM 8.4. (Steepest Descent)

Let f : Rn → R be differentiable and ∇f(xk) ̸= 0. Let dα = argmin
d
{f(xk + αd) : ∥d∥2 = 1}. Then

lim
α→0+

dα = − ∇f(xk)

∥∇f(xk)∥2
.
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Proof. Denote gk = − ∇f(xk)
∥∇f(xk)∥2

. Let p ̸= gk and ∥p∥ = 1.

By Cauchy-Schwartz Inequality, we have

|∇f(xk)T p| = c|∇f(xk)T gk|,

where c = | cos θ| and θ is the angle between p and gk. Since p ̸= gk we must have c < 1.

Now consider the Taylor expansion of f(xk + αp) and f(xk + αgk)

f(xk + αp) = f(xk) + α∇f(xk)T p+O(αp),

f(xk + αgk) = f(xk) + α∇f(xk)T gk +O(αgk).

Now we subtract the first equation from the second one

f(xk + αgk)− f(xk + αp) = α(∇f(xk)T gk −∇f(xk)T p) +O(αgk)−O(αp)

f(xk + αgk)− f(xk + αp)

α
= ∇f(xk)T gk −∇f(xk)T p+

O(αgk)−O(αp)

α
.

Since ∇f(xk)T gk is a negative number and 0 ≤ c < 1, we must have ∇f(xk)T gk−∇f(xk)T p being a strictly
negative number.

From Taylor Expansion we have

lim
α→0+

O(αgk)

α
= lim

α→0+

O(αgk)

∥αgk∥2
= 0, lim

α→0+

O(αp)

α
= lim

α→0+

O(αp)

||αp||2
= 0.

Hence for α > 0 sufficiently small, we always have f(xk +αgk)− f(xk +αp) < 0, therefore p can not be the
minimizer, and gk is the only minimizer as α→ 0+.

8.2 Line Search Rules

Construct a function as following
ϕ(α) = f(xk + αdk).

A natural choice is to find αk such that
αk = argmin

α>0
ϕ(α),

i.e., α is the best possible step size. This is called exact line search.

However, exact line search is usually computationally expensive, therefore not used much in practice. Instead
we use inexact line search.

Consider the following example.

Example.
min
x

f(x) = x2,

The initial point is x0 = 1. Choose dk = − sign(xk) and require f(xk + αkd
k) < f(xk). Consider the

following two step sizes,

αk,1 =
1

3k+1
, αk,2 = 1 +

2

3k+1
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By simple calculation, we get

xk
1 =

1

2

(
1 +

1

3k

)
, xk

2 =
(−1)k

2

(
1 +

1

3k

)
.

Although both {f(xk
1)} and {f(xk

2)} are monotone decreasing, none of them converges to the minimum
point.

8.2.1 Armijo Rule

DEFINITION 8.5. (Armijo Rule)

Let dk be a descent direction, if

f(xk + αdk) ≤ f(xk) + cα∇f(xk)T dk,

we say α satisfies Armijo condition, where c ∈ (0, 1) is a constant.

Armijo condition is also called sufficient decrease condition.

Figure 11: Armijo Rule

ϕ(α) = f(xk + αdk)

ϕ′(α) = ∇f(xk + dk)T dk

ϕ′(0) = ∇f(xk)T dk

l(α) = f(xk) + c · α∇f(xk)T dk, 0 < c < 1

l′(α) = c · ϕ′(α)

Drawback of Armijo Rule: α = 0 satisfies Armijo Rule ⇒ l(α) = f(xk), step size could be too small.

Algorithm 1: Back Track Armijo Method

Input: Choose parameters γ, c ∈ (0, 1). Initialize α← ᾱ.
while f(xk + αdk) > f(xk) + cα∇f(xk)T dk do

Set α← γα
end
Output: αk = α.
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8.2.2 Goldstein Rule

DEFINITION 8.6. (Goldstein Rule)

Let dk be a descent direction, if

f(xk + αdk) ≤ f(xk) + cα∇f(xk)T dk,

f(xk + αdk) ≥ f(xk) + (1− c)α∇f(xk)T dk

We say α satisfies Goldstein Condition, where c ∈
(
0, 1

2

)
is a constant.

Figure 12: Goldstein Condition

Goldstein rule may avoid the optimal step size.

8.2.3 Wolfe Rule

DEFINITION 8.7. (Wolfe Rule)

Let dk be a descent direction, if

f(xk + αdk) ≤ f(xk) + c1α∇f(xk)T dk, (8.1)

∇f(xk + αdk)T dk ≥ c2∇f(xk)T dk (Curvature condition) (8.2)

we say α satisfies Wolfe Condition, where c1, c2 ∈ (0, 1) are constants and c1 < c2.

Note: Since an optimal α∗ must be a stationary point (i.e., ∇f(xk + α∗dk)T dk = 0), and dk is a descent
direction, therefore α∇f(xk)T dk < 0. So α∗ must satisfy the Wolfe condition.

DEFINITION 8.8. (Strong Wolfe Rule)
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Let dk be a descent direction, if

f(xk + αdk) ≤ f(xk) + c1α∇f(xk)T dk,

|∇f(xk + αdk)T dk| ≤ c2|∇f(xk)T dk|,

we say α satisfies Strong Wolfe Condition, where c1, c2 ∈ (0, 1) are constants and c1 < c2.

Figure 13: Wolfe Condition

THEOREM 8.9. Suppose that f : Rn → R ∈ C1, let dk be a descent direction at xk. Assume ϕ(α) is
bounded below for α > 0. If 0 < c1 < c2 < 1, then there exists intervals of step lengths α satisfying the
Wolfe Condition and Strong Wolfe Condition.

Proof. Since 0 < c1 < 1, the line l(α) = f(xk) +αc1∇f(xk)T dk is unbounded below. Also ϕ(α) is bounded
below, hence they must intersect at least once. Let α1 be the smallest intersecting value of α, that is

f(xk + α1d
k) = f(xk) + α1c1∇f(xk)T dk

The Armijo condition holds for all step lengths less than α1.

By first order Taylor expansion, there exists α2 ∈ (0, α1) such that

f(xk + α1d
k)− f(xk) = α1∇f(xk + α2d

k)T dk

By combining the two equations above, since 0 < c1 < c2 < 1 and ∇f(xk)T dk < 0, we obtain

∇f(xk + α2d
k)T dk = c1∇f(xk)T dk > c2∇f(xk)T dk.
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Therefore α2 satisfies the Wolfe condition, and the inequalities holds strictly in both (8.1) and (8.2). Hence
by the smoothness assumption of f , there is an interval around α2 such that the Wolfe condition holds.
Moreover, since ∇f(xk + α2d

k)T dk = c1∇f(xk)T dk < 0, the Strong Wolfe Condition also holds in the same
interval.

8.3 Convergence Analysis of Armijo backtracking line search

DEFINITION 8.10. (Lipschitz Continuous)

A function f : Rn → R is called Lipschitz continuous with constant L ≥ 0 if for any x, y ∈ Rn,

|f(y)− f(x)| ≤ L ∥y − x∥ .

Note: Lipschitz continuous implies uniformly continuous, but not the the way around.

For example y =
√
|x| is uniformly continuous but not Lipschitz continuous.

Figure 14: Uniform but not Lipschitz continuous functions

Lemma 8.11. Let f : Rn → R be a continuously differentiable function (f ∈ C1). Then f is Lipschitz
continuous with constant L if and only if for all x ∈ D, ∥∇f(x)∥ ≤ L.

Proof. Let ∥∇f(x)∥ ≤ L for any x ∈ Rn. Then for any x, y ∈ Rn we have

f(y) = f(x) +∇f(x+ θ(y − x))T (y − x), 0 < θ < 1.

Hence
|f(y)− f(x)| = |∇f(x+ θ(y − x))T (y − x)|

≤ ∥∇f(x+ θ(y − x)∥ · ∥y − x∥ (Cauchy-Schwartz Inequality)

≤ L ∥y − x∥
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For the other direction, let’s assume |f(y)− f(x)| ≤ L ∥y − x∥ for all x, y ∈ Rn.

Let y = x+ α∇f(x), α > 0. Then f(y) = f(x) + α∇f(x+ θ(y − x))T∇f(x) for some θ ∈ (0, 1). Hence

|f(y)− f(x)| = |α| · |∇f(x+ θ(y − x))T∇f(x)| ≤ L ∥y − x∥ = L|α| · ∥∇f(x)∥ .

By dividing α from both sides

|∇f(x+ αθ∇f(x))T∇f(x)| ≤ L ∥∇f(x)∥ .

Let α→ 0+, then by continuity of ∇f(x) (f ∈ C1), we have

lim
α→0
|∇f(x+ αθ∇f(x))T∇f(x)| = |∇f(x+ lim

α→0
αθ∇f(x))T∇f(x)|

= ∥∇f(x)∥2 ≤ L ∥∇f(x)∥

Hence ∥∇f(x)∥ ≤ L, the other direction is proved.

DEFINITION 8.12. (Lipschitz continuous gradient)

A function f : Rn → R ∈ C1 has a Lipschitz continuous gradient with constant L ≥ 0 if for any x, y ∈ Rn,

|∇f(y)−∇f(x)| ≤ L ∥y − x∥

THEOREM 8.13. (Convergence for Armijo Backtracking Line Search)

Let f : Rn → R be such that f is differentiable and the gradient ∇f(x) is Lipschitz continuous with constant
L, i.e., for any x, y ∈ Rn,

|∇f(y)−∇f(x)| ≤ L ∥y − x∥

Let xk+1 = xk + αkd
k where step size αk is obtained by Armijo backtracking and dk is a descent direction.

Assume

1. f(xk) > −∞. (f(xk) is bounded below)

2. The descent direction is bounded, i.e.,
∥∥dk∥∥ < +∞.

Then we have
lim
k→∞

∇f(xk)T dk = 0.

Proof. Suppose on the contrary the conclusion does not hold. Then there must exist a subsequence J ⊆ Z+

such that
sup
k∈J
∇f(xk)T dk = η < 0.

From the fact the Armijo condition is satisfied we have

f(xk+1)− f(xk) ≤ cαk∇f(xk)T dk.

Since both sides are negative and c ∈ (0, 1), we have

|f(xk+1)− f(xk)| ≥ c|αk∇f(xk)T dk|.
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Since f(xk) is a bounded decreasing sequence (dk is a descent direction), it converges by the Monotone
Convergence Theorem. Then, we also have f(xk+1) − f(xk) → 0 since convergent sequences are Cauchy.
Then we can get

f(xk+1)− f(xk)→ 0,

which implies
αk∇f(xk)T dk → 0.

Since ∇f(xk)T dk = η < 0 for k ⊆ J , we must have αk → 0. So we can assume αk < 1 for k sufficiently
large, as a consequence, we must have done at least one backtracking step inside the while loop in the Armijo
backtrack method (Definition 1). (Why? WLOG the initial step size can be chosen as 1.)

Therefore αkγ
−1 must be a step size that violates the Armijo condition, let αkγ

−1 = βk, we have

f(xk + βkd
k) > f(xk) + cβk∇f(xk)T dk (8.3)

By Taylor Expansion, there exists 0 < θ < 1 such that

f(xk + βkd
k)− f(xk) = βk∇f(xk + θβkd

k)T dk

= βk∇f(xk)T dk + βk∇f(xk + θβkd
k)T dk − βk∇f(xk)T dk

= βk∇f(xk)T dk + βk(∇f(xk + θβkd
k)−∇f(xk))T dk

≤ βk∇f(xk)T dk + βk

∥∥(∇f(xk + θβkd
k)−∇f(xk))

∥∥ · ∥∥dk∥∥ (Cauchy-Schwarz)

≤ βk∇f(xk)T dk + βkL
∥∥θβkd

k
∥∥ · ∥∥dk∥∥ (Lipschitz gradient)

= βk∇f(xk)T dk + β2
kLθ

∥∥dk∥∥2
Combining with equation (8.3), we have

βk∇f(xk)T dk + β2
kLθ

∥∥dk∥∥2 > cβk∇f(xk)T dk

which means
(1− c)∇f(xk)T dk + βkLθ

∥∥dk∥∥2 > 0 (8.4)

Since ∇f(xk)T dk < η and 1− c > 0, we have

(1− c)η + βkLθ
∥∥dk∥∥2 > 0

Let k →∞, then βk → 0, also
∥∥dk∥∥ is bounded, which implies

(1− c)η ≥ 0

which is a contradiction to η < 0, hence the theorem is proved.

Corollary 8.14. Convergence of normalized gradient descent

Let f : Rn → R be such that f is differentiable and the gradient ∇f(x) is Lipschitz continuous with constant

L. Let dk = − ∇f(xk)
∥∇f(xk)∥ in the Armijo backtracking line search algorithm, then every accumulation point x∗,

of the sequence {xk} is a stationary point (i.e., ∇f(x∗) = 0).

Proof. First since dk is a descent direction, therefore the sequence {f(xk)} is decreasing. If x∗ is any
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accumulation point of the sequence {xk}, then we claim that f(x∗) is a lower bound for the sequence
{f(xk)}. (why? prove this claim as an exercise.)

Since the sequence {f(xk)} is bounded below, Theorem 8.13 applies. That is

0 = lim
k→∞

∇f(xk)T
(
− ∇f(x

k)

∥∇f(xk)∥

)
= lim

k→∞
−
∥∥∇f(xk)

∥∥ .
Since ∇f is continuous, we have ∇f(x∗) = 0.

Corollary 8.15. Let f : Rn → R be such that f is differentiable and the gradient ∇f(x) is Lipschitz
continuous with constant L. Assume that dk is the descent direction at step k in the Armijo backtracking
line search algorithm and ∥dk∥ = 1 (The step size is chosen by Armijo backtracking line search). Let
θk ∈ [0, π/2] be the angle between the negative gradient direction −∇f(xk) and the descent direction dk. If
θk ≤ π

2 − ϵ for some constant ϵ > 0 when k is sufficiently large. Then every accumulation point x∗, of the
sequence {xk} is a stationary point (i.e., ∇f(x∗) = 0)

Proof. Exercise.

In fact, we can obtain the same result without assuming the descent direction dk is normalized.

THEOREM 8.16. Let f : Rn → R be such that f is differentiable and the gradient ∇f(x) is Lipschitz
continuous with constant L. Let dk be a descent direction at step k in the Armijo backtracking line search
algorithm. Let θk ∈ [0, π/2] be the angle between the negative gradient direction −∇f(xk) and the descent
direction dk. If θk ≤ π

2 − ϵ for some constant ϵ > 0 when k is sufficiently large. Then every accumulation
point x∗, of the sequence {xk} (generated by Armijo backtracking line search algorithm) is a stationary point
(i.e., ∇f(x∗) = 0).

Proof. First since dk is a descent direction, therefore the sequence {f(xk)} is decreasing. If x∗ is any
accumulation point of the sequence {xk}, then we know that f(x∗) is a lower bound for the sequence
{f(xk)}.

From the proof of Theorem 8.13, we can derive a lower bound for αk. From equation (8.4), we have

βkθ >
(c− 1)∇f(xk)T dk

L ∥dk∥2

Therefore

αkγ
−1 = βk ≥ βkθ >

(c− 1)∇f(xk)T dk

L ∥dk∥2

Hence

αk >
γ(c− 1)∇f(xk)T dk

L ∥dk∥2
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By the assumption of θk we know −∇f(xk)T dk = cos(θk)
∥∥∇f(xk)

∥∥∥∥dk∥∥ ≥ δ
∥∥∇f(xk)

∥∥∥∥dk∥∥ for some δ > 0.
Then by sufficient decrease condition, we have

f(xk+1)− f(xk) ≤ cαk∇f(xk)T dk <
γc(c− 1)δ2

L

∥∥∇f(xk)
∥∥2 ≤ 0

Hence

|f(xk+1)− f(xk)| ≥ γc(1− c)δ2

L

∥∥∇f(xk)
∥∥2 ≥ 0 (8.5)

Therefore, if f(xk) is bounded below (guaranteed by the existence of an accumulation point), we have
lim
k→∞

|f(xk+1)− f(xk)| = 0, which implies ∇f(xk)→ 0 as k →∞.

Corollary 8.17. Convergence of gradient descent

Let f : Rn → R be such that f is differentiable and the gradient ∇f(x) is Lipschitz continuous with constant
L. If dk = −∇f(xk) in Armijo backtracking line search algorithm, then every accumulation point x∗,
of the sequence {xk} (generated by Armijo backtracking line search algorithm) is a stationary point (i.e.,
∇f(x∗) = 0).

Proof. The angle θk between dk and the negative gradient is 0 in this case, therefore the result follows from
Theorem 8.16.

8.4 Convergence Analysis, Zoutedijk’s Theorem

THEOREM 8.18. (Zoutendijk Condition)

Consider xk+1 = xk +αkd
k, where α is the step size and dk is a descent direction. and the iterations satisfy

Wolfe condition. Assume the objective function f : Rn → R is bounded below, continuously differentiable
(C1) and ∇f(x) is Lipschitz continuous with constant L. Then

∞∑
k=0

cos2 θk
∥∥∇f(xk)

∥∥2 < +∞,

where cos θk is cosine of the angle between the negative gradient −∇f(xk) and the descent direction dk, i.e.,

cos θk =
−∇f(xk)T dk

∥∇f(xk)∥ ∥dk∥
.

Proof. From the curvature condition, we have

(∇f(xk+1)−∇f(xk))T dk ≥ (c2 − 1)∇f(xk)T dk.

By Cauchy-Schwarz inequality an Lipschitz continuity of the gradient, we have

(∇f(xk+1)−∇f(xk))T dk ≤
∥∥∇f(xk+1)−∇f(xk)

∥∥∥∥dk∥∥ ≤ αk

∥∥dk∥∥2 .
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Combining the two equality above, we have

αk ≥
c2 − 1

L

∇f(xk)T dk

∥dk∥2
.

Note ∇f(xk)T dk < 0, substitute αk into the sufficient decrease condition, we have

f(xk+1) ≤ f(xk) + c1
c2 − 1

L

(∇f(xk)T dk)2

∥dk∥2
.

By the definition of θk, this is equivalent to

f(xk+1) ≤ f(xk) + c1
c2 − 1

L
cos2 θk

∥∥∇f(xk)
∥∥2 .

Sum over all k, we have

f(xk+1) ≤ f(x0)− c1
1− c2
L

k∑
j=0

cos2 θj
∥∥∇f(xj)

∥∥2 .
Since f(x) is bounded below, and from 0 < c1 < c2 < 1 we have c1(1− c2) > 0, therefore when k →∞

∞∑
j=0

cos2 θj
∥∥∇f(xj)

∥∥2 < +∞.

Corollary 8.19. For a liner search iteration xk+1 = xk + αkd
k, let θk be the angle between the negative

gradient −∇f(xk) and the descent direction dk, and assume for any k, there exists a constant γ > 0 such
that

θk ≤
π

2
− γ,

Then under the assumption of Theorem 8.18, we have

lim
k→∞

∇f(xk) = 0

Proof. Assume on the contrary that the conclusion is not true, then there exists a subsequence {kl} and
positive constant δ > 0 such that ∥∥∇f(xkl)

∥∥ ≥ δ, l = 1, 2, ...

By the assumption of θk, for any k
cos θk > sin γ > 0.

Therefore we have

∞∑
k=0

cos2 θk
∥∥∇f(xk)

∥∥2 ≥ ∞∑
l=1

cos2 θkl

∥∥∇f(xkl)
∥∥2 ≥ ∞∑

l=1

(sin2 γ)δ2 →∞,

which is a contradiction to Theorem 8.18, therefore the corollary is proved.
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8.5 Convergence of Gradient Descent Algorithm

Consider the gradient descent step
xk+1 = xk − αk∇f(xk),

where αk is a step size at step k, we assume αk ≥ 0.

In corollary 8.17 and corollary 8.19, we know that if the function f being minimized has a Lipschitz continuous
gradient, then any accumulation point generated by gradient descent method is a stationary point, provided
that the step size is carefully chosen (Armijo backtracking or Wolfe condition). Now we study the behavior
of gradient descent method under the assumption that function f is convex. In fact, under convexity
assumption, we can use a constant step size and obtain some results about the convergence rate of the
gradient descent algorithm.

Lemma 8.20. Suppose function f(x) : Rn → R is differentiable, dom f is convex, and its gradient ∇f(x) is
Lipschitz continuous with constant L, then the following holds

f(y) ≤ f(x) +∇f(x)T (y − x) +
L

2
∥y − x∥2 ,∀x, y ∈ dom f (8.6)

Proof. For any x, y ∈ dom f , we construct a function

g(t) = f(x+ t(y − x)), t ∈ [0, 1].

Obviously, g(0) = f(x), g(1) = f(y), and

g′(t) = ∇f(x+ t(y − x))T (y − x).

In particular
g′(0) = ∇f(x)T (y − x).

By Newton-Lebnitz Theorem, we have

g(1)− g(0) =

∫ 1

0

g′(t)dt.

Note g(t) is well-defined for t ∈ [0, 1] since dom f is convex. Therefore

f(y)− f(x)−∇f(x)T (y − x) =

∫ 1

0

g′(t)dt− g′(0)

=

∫ 1

0

((g′(t)− g′(0))dt

=

∫ 1

0

(∇f(x+ t(y − x))−∇f(x))T (y − x)dt

≤
∫ 1

0

∥∇f(x+ t(y − x))−∇f(x)∥ ∥y − x∥ dt (Cauchy–Schwarz Inequality)

≤
∫ 1

0

L ∥y − x∥2 tdt (Lipschitz continuity of gradient)

=
L

2
∥y − x∥2
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THEOREM 8.21. (Convergence of Gradient Descent Algorithm for Convex Function)

Suppose f(x) is a convex function, and ∇f(x) is Lipschitz continuous with constant L. Assume there exists
a point x∗ ∈ dom f such that

f(x∗) = inf
x∈dom f

f(x)

(the infimum can be attained). If the step size αk is chosen to be a constant α such that 0 < α < 1
L . Then

the sequence {f(xk)} obtained by iteration xk+1 = xk − +αk∇f(xdk) where dk is a descent direction is
converging to the optimal value, i.e.,

lim
k→∞

f(xk) = f(x∗),

and the convergence rate is O( 1k ) (in terms of optimal value).

Proof. Since ∇f(x) is Lipschitz continuous, then for any xk ∈ dom f , Let xk+1 = xk − α∇f(xk), by
equation (8.6), we have

f(xk+1) ≤ f(xk)− α

(
1− Lα

2

)∥∥∇f(xk)
∥∥2 (8.7)

Since 0 < α <
1

L
, we have 1− Lα

2
>

1

2
.

f(xk+1) ≤ f(xk)− α

2

∥∥∇f(xk)
∥∥2 (by equation (8.7))

≤ f(x∗) +∇f(xk)T (xk − x∗)− α

2

∥∥∇f(xk)
∥∥2 (by Proposition 4.8, f(x) is convex)

= f(x∗) +∇f(xk)T (xk − x∗ − α

2
∇f(xk))

= f(x∗) +
1

2α
((xk − x∗)− (xk − x∗ − α∇f(xk)))T (2(xk − x∗)− α∇f(xk))

= f(x∗) +
1

2α
((xk − x∗)− (xk − x∗ − α∇f(xk)))T ((xk − x∗) + (xk − x∗ − α∇f(xk))

= f(x∗) +
1

2α
(
∥∥xk − x∗∥∥2 − ∥∥xk − x∗ − α∇f(xk)

∥∥2)
= f(x∗) +

1

2α
(
∥∥xk − x∗∥∥2 − ∥∥xk+1 − x∗∥∥2)

Now we make a summation of the above inequality for k = 0, 1, ..., t− 1, i.e.,

t−1∑
k=0

(
f(xk+1)− f(x∗)

)
≤ 1

2α

t−1∑
k=0

(∥∥xk − x∗∥∥2 − ∥∥xk+1 − x∗∥∥2)
=

1

2α

(∥∥x0 − x∗∥∥2 − ∥∥xt − x∗∥∥2)
≤ 1

2α

(∥∥x0 − x∗∥∥2)
( From the above inequalities, what can you say about the sequence {xt} ?) Since {f(xk)} is a non-increasing
sequence, we have

f(xt)− f(x∗) ≤ 1

t

t−1∑
k=0

(f(xk)− f(x∗)) ≤ 1

2tα

∥∥x0 − x∗∥∥2 .
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Hence we have f(xt)− f(x∗) ∼ O

(
1

t

)
. Moreover, by continuity of f , we have

0 ≤ −f(x∗) + lim
t→∞

f(xt) = lim
t→∞

(
f(xt)− f(x∗)

)
≤ lim

t→∞

1

2tα

∥∥x0 − x∗∥∥2 = 0,

which implies that
f(x∗) = lim

t→∞
f(xt),

as required.

8.6 Strongly Convex Function

Lemma 8.22. (Gradient of Convex Function Is Monotone)

Let f : Rn → R to be a differentiable function. Then f is convex if and only if f has a monotone gradient,

(∇f(x)−∇f(y))T (x− y) ≥ 0,∀x, y ∈ Rn

Proof. Assume f(x) is convex, then

f(y) ≥ f(x) +∇f(x)T (y − x)

and
f(x) ≥ f(y) +∇f(y)T (x− y)

Adding the above inequalities together, we have

(∇f(x)−∇f(y))T (x− y) ≥ 0.

The other direction is left as an exercise.

DEFINITION 8.23. (Strongly Convex Function)

A function f(x) : Rn → R is M -strongly convex if there exists a constant M > 0 such that the function

g(x) = f(x)− M

2
∥x∥2

is also convex. That is, a strongly convex function is a convex function plus a quadratic term.

Lemma 8.24.

• Let f(x) be a differentiable function. Then f(x) is M -strongly convex if and only if

∀x, y, (∇f(x)−∇f(y))T (x− y) ≥M ∥x− y∥22
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• Let f(x) be a C2-class function. Then f(x) is M -strongly convex if and only if

∀x, ∇2f(x)−MI ⪰ 0

Proof. Exercise

8.7 Lipschitz Continuity of Gradient

Lemma 8.25. Let f : Rn → R to be a differentiable and convex function. Then the following statements
are equivalent

• ∇f(x) is Lipschitz continuous with constant L.

• g(x) =
L

2
∥x∥2 − f(x) is convex.

• For any x, y ∈ Rn, we have

(∇f(x)−∇f(y))T (x− y) ≥ 1

L
∥∇f(x)−∇f(y)∥2 .

Proof.
From 1 to 2:

We just need to check ∇g(x) is monotone. Since ∇g(x) = Lx−∇f(x) and ∇g(y) = Ly −∇f(y), we have

(∇g(x)−∇g(y))T (x− y) = (L(x− y))− (∇f(x)−∇f(y))T (x− y)

= L ∥x− y∥2 − (∇f(x)−∇f(y))T (x− y)

≥ L ∥x− y∥2 − L ∥x− y∥2 = 0. (by Lipschitz)

Therefore g(x) is convex.

From 2 to 3:

Given any x ∈ Rn, we construct function

gx(z) =
L

2
∥z∥2 − f(z) +∇f(x)T z

By our assumption g(z) is convex, a convex function plus a linear term is also convex, therefore gx(z) is
convex.

By convexity of gx(z), we have

∀z1, z2 ∈ Rn, gx(z2) ≥ gx(z1) +∇gx(z1)T (z2 − z1), (8.8)

Denote fx(z) = f(z)−∇f(x)T z, then we can write gx(z) =
L

2
∥z∥2 − fx(z).
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Substitute gx(z) into equation (8.8), we have

L

2
∥z2∥2 − fx(z2) ≥

L

2
∥z1∥2 − fx(z1) + (Lz1 −∇fx(z1))T (z2 − z1)

which is equivalent to

fx(z2) ≤ fx(z1) +∇fx(z1)T (z2 − z1) +
L

2
∥z2 − z1∥2

Let z2 = z, z1 = y, we have

fx(z) ≤ fx(y) +∇fx(y)T (z − y) +
L

2
∥z − y∥2 .

Notice ∇fx(z) = 0 at z = x, i.e., ∇fx(x) = 0 and fx(z) is convex function (a convex function plus a linear
term is also convex). Therefore x is a global minimizer of fx(z). By problem 2 in the practice mid term, we
can show

fx(x) ≤ fx(y)−
1

2L
∥∇fx(y)∥2 .

Since ∇fx(y) = ∇f(y)−∇f(x), fx(x) = f(x)−∇f(x)Tx and fx(y) = f(y)−∇f(x)T y, we have

1

2L
∥∇f(y)−∇f(x)∥2 ≤ f(y)− f(x)−∇f(x)T (y − x)

By interchanging x and y, we have

1

2L
∥∇f(x)−∇f(y)∥2 ≤ f(x)− f(y)−∇f(y)T (x− y)

Adding the above two inequalities together, we have the desired inequality

(∇f(x)−∇f(y))T (x− y) ≥ 1

L
∥∇f(x)−∇f(y)∥2 .

From 3 to 1:

Apply Cauchy-Schwarz Inequality. Easy

8.8 Convergence of Gradient Descent Algorithm for Strongly Convex Function

THEOREM 8.26. (Gradient Descent, Strongly Convex)

Suppose f(x) is a M -strongly convex function and ∇f(x) is L-Lipschitz continuous. Let x∗ be such that

f(x∗) = inf
x

f(x). Then if the step size α ∈
(
0,

2

M + L

)
, the sequence {xk} produced by gradient descent

algorithm converges to x∗ Q-linearly.

Proof. First since f(x) is M -strongly convex function, by definition of strongly convex function, we have

g(x) = f(x)− M

2
∥x∥2

is a convex function.
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Since f(x) is Lipschitz continuous, we have L
2 ∥x∥

2 − f(x) is convex by Lemma 8.25. Therefore

L

2
∥x∥2 − f(x) =

L−M

2
∥x∥2 − g(x)

is convex.

Since L−M
2 ∥x∥2 − g(x) is convex, again by Lemma 8.25, we have

(∇g(x)−∇g(y))T (x− y) ≥ 1

L−M
∥∇g(x)−∇g(y)∥2 .

Plugging in g(x) = f(x)− M
2 ∥x∥

2
we have

(∇f(x)−∇f(y))T (x− y) ≥ ML

M + L
∥x− y∥2 + 1

M + L
∥∇f(x)−∇f(y)∥2 .

Let x = xk, y = x∗ and the fact that x∗ is a global minimizer implies ∇f(x∗) = 0, we have

∇f(xk)T (xk − x∗) ≥ ML

M + L

∥∥xk − x∗∥∥2 + 1

M + L

∥∥∇f(xk)
∥∥2 . (8.9)

Let α ∈
(
0,

2

M + L

)
. Then

∥∥xk+1 − x∗∥∥2 =
∥∥xk − α∇f(xk)− x∗∥∥2

=
∥∥xk − x∗∥∥2 − 2α∇f(xk)T (xk − x∗) + α2

∥∥∇f(xk)
∥∥2

≤ (1− α
2ML

M + L
)
∥∥xk − x∗∥∥2 + α(α− 2

M + L
)
∥∥∇f(xk)

∥∥2 (by (8.9))

≤ (1− α
2ML

M + L
)
∥∥xk − x∗∥∥2 . (since α− 2

M+L < 0)

It is easy to see

(
1− α

2ML

M + L

)
∈ (0, 1), therefore the convergence is Q-linear.

8.9 Newton’s Method

Newton step:
xk+1 = xk −∇2f(xk)−1∇f(xk) (8.10)

The step size α is always 1, this is the classic Newton’s method.

8.9.1 Convergence of Newton’s method

THEOREM 8.27. Suppose f : Rn → R is a C2-class function, and the Hessian matrix ∇2f(x) is Lipschitz-
continuous in an open ball Bδ(x

∗) of the optimal point x∗, i.e., there exists constant L such that

∀x, y ∈ Bδ(x
∗),

∥∥∇2f(x)−∇2f(y)
∥∥ ≤ L ∥x− y∥

If in addition ∇f(x∗) = 0,∇2f(x∗) ≻ 0. Then we have the following conclusion for the sequence generated
by (8.10).

1. If the initial point x0 is close enough to x∗, then the sequence {xk} is converging to x∗.
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2. {xk} converges to x∗ Q-quadratically.

3.
{∥∥∇f(xk)

∥∥} converges to 0 Q-quadratically.

Proof. By definition of Newton’ step and ∇f(x∗) = 0 at the optimal point x∗, we have

xk+1 − x∗ = xk −∇2f(xk)−1∇f(xk)− x∗

= ∇2f(xk)−1[∇2f(xk)(xk − x)− (∇f(xk)−∇f(x∗)]
(8.11)

By Taylor theorem, we have

∇f(xk)−∇f(x∗) =

∫ 1

0

∇2f(xk + t(x∗ − xk))(xk − x∗)dt

Therefore we have:∥∥∇2f(xk)(xk − x∗)− (∇f(xk)−∇f(x∗))
∥∥ =

∥∥∥∥∫ 1

0

[∇2f(xk + t(x∗ − xk))−∇2f(xk)](xk − x∗)dt

∥∥∥∥
≤

∫ 1

0

∥∥∇2f(xk + t(x∗ − xk))−∇2f(xk)
∥∥ ∥∥xk − x∗∥∥ dt

≤
∥∥xk − x∗∥∥2 ∫ 1

0

Ltdt

=
L

2

∥∥xk − x∗∥∥2
(8.12)

Since ∇2f(x∗) is positive definite and f is C2 class, there exists r > 0 such that when ∥x− x∗∥ ≤ r, ∇2f(x)
is invertible and ∥∥∇2f(x)−1

∥∥ ≤ 2
∥∥∇2f(x∗)−1

∥∥
Combining equation (8.11) and equation (8.11), we have∥∥xk+1 − x∗∥∥ ≤ ∥∥∇2f(xk)−1

∥∥∥∥∇2f(xk)(xk − x∗)− (∇f(xk)−∇f(x∗))
∥∥

≤ L
∥∥∇2f(x∗)−1

∥∥∥∥xk − x∗∥∥2
Let C = L

∥∥∇2f(x∗)−1
∥∥, then ∥∥xk+1 − x∗

∥∥ ≤ C
∥∥xk − x∗

∥∥2. Therefore the convergence rate is Q-quadratic
if the sequence is converging. Hence∥∥xk − x∗∥∥ ≤ C2k−1

∥∥x0 − x∗∥∥2k = (C
∥∥x0 − x∗∥∥)2k−1

∥∥x0 − x∗∥∥
Therefore let C

∥∥x0 − x∗
∥∥ ≤ 1

2 , we can guarantee the convergence of the sequence, which gives

∥∥x0 − x∗∥∥ ≤ 1

2L ∥∇2f(x∗)−1∥

Therefore, when initial point x0 satisfies

∥∥x0 − x∗∥∥ ≤ min

{
δ, r,

1

2L ∥∇2f(x∗)−1∥

}
the sequence {xk} is in the open ball Bδ(x

∗) and is converging to x∗ Q-quadratically.
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Since ∇f(x) is continuous, ∇f(xk) is converging to 0 as well.

To study the convergence rate of the gradient, let dk = −∇2f(xk)−1∇f(xk), then xk+1 = xk + dk, we have∥∥∇f(xk+1)
∥∥ =

∥∥∇f(xk+1 −∇f(xk)−∇2f(xk)dk
∥∥

=

∥∥∥∥∫ 1

0

∇2f(xk + tdk)dkdt−
∫ 1

0

∇2f(xk)dkdt

∥∥∥∥
≤

∫ 1

0

∥∥∇2f(xk + tdk)−∇2f(xk)dk
∥∥ dt

≤
∫ 1

0

∥∥∇2f(xk + tdk)−∇2f(xk)
∥∥∥∥dk∥∥ dt

≤
∫ 1

0

Lt
∥∥dk∥∥2 dt Lipschitz

≤ 1

2

∥∥dk∥∥2 ≤ 1

2
L
∥∥∇2f(xk)−1

∥∥2 ∥∥∇f(xk)
∥∥2

≤ 2L
∥∥∇2f(x∗)−1

∥∥2 ∥∥∇f(xk)
∥∥2

Therefore, the convergence is Q-quadratic.

Remark 8.28. From Theorem 8.27, we can see Newton’s method has fast convergence rate, but its conver-
gence is conditional: First, Newton’s method only has local convergence instead of global convergence. If
the initial point is too far away from the optimal solution, Newton’s method can fail to converge. Secondly,
The Hessian matrix ∇2f(x∗) needs to be positive definite. If ∇2f(x∗) is singular, it may fail to converge or
converge very slow.

Therefore, in practice, people often combine Newton method with other first order methods, for example,
the gradient descent method. One can use gradient descent method to obtain a solution which is not very
accurate but close to the optimal point, then switch to Newton’s method to obtain a very accurate solution.

8.9.2 Quasi-Newton Method

*** Additional reading not covered in this course ***
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9 Trust Region Methods

Let f : Rn → R be a C2-class function. Consider the second order Taylor expansion of function f .

f(xk + d) = f(xk) +∇f(xk)T d+
1

2
dT∇2f(xk + td)d, t ∈ (0, 1)

Similar to Newton’s method, we consider second order approximation of f(xk + d). Define

mk(d) = f(xk) +∇f(xk)T d+
1

2
dTBkd,

where Bk is a symmetric matrix. We would like Bk to be an approximation of the Hessian matrix ∇2f(xk).

If Bk happens to be equal to ∇2f(xk), then the error of the approximation is O(∥d∥3).

Hence function mk only approximates f(x) well when ∥d∥ is small, when ∥d∥ is big, the approximation may
be very bad. Therefore we need to add some constraints to it. Consider the approximation of f(xk + d) in
the following region (closed ball):

Ωk = {xk + d | ∥d∥ ≤ ∆k}

We call Ωk the “trust region” and ∆k the “trust region radius”. It literally means we “trust” function mk(d)
to be a good approximation of f(xk + d) in the trust region, and ∆k measures the size of this trust region.
Therefore we need to solve the following trust region subproblem at every iteration of trust region method.

min
d∈Rn

mk(d)

s.t. ∥d∥ ≤ ∆k

(9.1)

In trust region methods, it is important to choose the right trust region region to ensure convergence. If
mk(d) is a good approximation and the optimal d is on the boundary of the trust region, then it is reasonable
to increase the trust region radius to make the algorithm more efficient. Else if the error is too big, then we
should decrease the trust region radius. Otherwise, the trust region radius stays the same.

We introduce the following parameter ρk to measure how “good” the approximation is

ρk =
f(xk)− f(xk + d)

mk(0)−mk(dk)

The trust region method is described in Algorithm 2:
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Algorithm 2: Trust Region Method

Input: the maximum radius ∆max, initial radius ∆0, initial point x
0, k ← 0.

Parameters: 0 ≤ η < ρ1 < ρ2 < 1, γ1 < 1 < γ2
In practice, one can choose ρ̄1 = 1

4 , ρ̄2 = 0.75 and γ1 = 0.25, γ2 = 2.
while Stopping criteria not satisfied do

Solve the trust region subproblem to obtain dk

Compute the measurement ρk
Updating the trust region radius ρk

∆ =


γ1∆k ρk < ρ̄1

min{γ2∆k,∆max} ρk > ρ̄2 and
∥∥dk∥∥ = ∆k

∆k otherwise

Updating xk:

xk+1 =

{
xk + dk ρk > η

xk otherwise

k ← k + 1
end

Note we use ∆max to control the maximum radius of the trust region, that is because ρk only reflects relative
error, when ∥d∥ is big, the error is big, even ρk is close to 1.

Also besides ρk > ρ̄2, we also require ∥d∥k = ∆k in order to increase the radius of the trust region. That
is because if the optimal d is in the interior of the trust region, then increasing the trust region radius will
yield the same optimal solution for the trust region subproblem.

9.1 Solving the Trust Region Subproblem

The trust region subproblem is a constrained quadratic minimization problem. The following condition is
the optimal condition for the trust region subproblem.

THEOREM 9.1. Vector d∗ is the global optimal solution for the trust region subproblem

min
d∈Rn

c+ bT d+ 1
2d

TBd = m(d)

s.t. ∥d∥ ≤ ∆

if and only if d∗ is feasible and there exists λ ≥ 0 such that

(B + λI)d∗ = −b, (9.2a)

λ(∆− ∥d∗∥) = 0, (9.2b)

(B + λI) ⪰ 0. (9.2c)

Proof. We only prove it is the sufficient condition, we will delay the complete proof of this theorem to the
next chapter.

We define function

m̂(d) = c+ bT d+
1

2
dT (B + λI)d
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Then m̂(d) is a convex function by equation (9.2c). Also d∗ is a stationary point of m̂(d) by equation (9.2a),
therefore d∗ is a global minimizer of m̂(d). Note m̂(d) = m(d)+ λ

2 d
T d. Therefore for any feasible d, we have

m̂(d) ≥ m̂(d∗)

m(d) +
λ

2
∥d∥2 ≥ m(d∗) +

λ

2
∥d∗∥2

m(d) ≥ m(d∗) +
λ

2
(∥d∗∥2 − ∥d∥2)

By equation (9.2b), we have λ(∆2 − ∥d∗∥2) = 0, and

m(d∗) +
λ

2
(∥d∗∥2 − ∥d∗∥2) = m(d∗) +

λ

2
(∆2 − ∥d∥2)

Since ∥d∥ ≤ ∆, we have

m(d∗) +
λ

2
(∆2 − ∥d∥2) ≥ m(d∗)

Therefore m(d) ≥ m(d∗) for any feasible d and d∗ is a global minimizer.

We now describe how to solve the trust region subproblem.

9.1.1 Case a

If b = 0, then we already know how to solve the trust region subproblem from Assignment 2. In fact since
b = ∇f(xk)T , we would have already obtained a stationary point if b = 0, so the trust region method can
just terminate. Therefore we can assume b ̸= 0

9.1.2 Case b

We solve the trust region subproblem without the constraints, i.e., let d̂ be a global minimizer of m(d). If∥∥∥d̂∥∥∥ < ∆, then d̂ is automatically the optimal solution of the constrained trust region subproblem.

9.1.3 Case c

Assume m(d) has a global minimzer
∥∥∥d̂∥∥∥ ≥ ∆, if this happens, then we claim there must exist a global

optimal solution of the trust region subproblem on the boundary.

Lemma 9.2. Let d̂ be a global minimizer of m(d). If
∥∥∥d̂∥∥∥ ≥ ∆, then there exists a global minimizer d∗ of

the trust region subproblem such that ∥d∗∥ = ∆.

Proof. Let d∗ be a global minimizer of the constrained trust region subproblem (its existence is guaranteed
by Weierstrass extreme value theorem). If ∥d∗∥ = ∆, then we are done. So let’s assume ∥d∗∥ < ∆, then
there is a small open ball in the trust region which contains d∗, so ∥d∗∥ is also a local minimizer of the
unconstrained optimization problem m(d). By Second Order Necessary Condition for local optimality, d∗

must be a stationary point of m(d) and ∇2m(d∗) = B must be positive semidefinite. Since B is positive
semidefinite, m(d) must be a convex function by Proposition 4.9, therefore d∗ must be a global minimizer of
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m(d). So we now have two global minimizers of m(d): d̂ and d∗. We can then draw a line segment connecting

d̂ and d∗. Any point in this line segment is a convex combination of d∗ and d̂, which is also a stationary
point, and therefore a global minimizer of m(d) by Theorem 5.5. So the intersection of this line segment
with the boundary ∥d∥ = ∆ is a global minimizer of the trust region subproblem.

In the other case, if m(d) is not bounded below, so there exists no global minimizer of m(d), we can also
similarly show that there exists an optimal solution of the trust region subproblem on the boundary, this is
left as an exercise.

Before we derive a complete algorithm, we need to define a function d(λ) to help analyze the problem.

Let B = QΛQT be the eigenvalue decomposition of B where Q is orthonormal and

Λ = diag(λ1, λ2, ..., λn)

with λ1 ≤ λ2 ≤ · · · ≤ λn being the eigenvalues of B.

Let Q = [q1, q2, ..., qn] where qi is the eigenvector corresponding to λi and define function

d(λ) = −
n∑

j=1

qTj b

λj + λ
qj

One can check if λ > −λ1 (or more general λ ̸= λj), then d(λ) = −(B + λI)−1b and

(B + λI)d(λ) = −b (9.3)

which satisfies condition (9.2a).

The squared norm of d(λ) is the following

∥d(λ)∥2 =

n∑
j=1

(qTj b)
2

(λj + λ)2

Since b ̸= 0 by assumption, there must exists some j such that qTj b ̸= 0. Therefore ∥d(λ)∥ is a monotone

decreasing function on the interval [−λ1,∞). (If λ = −λ1 and qTj b ̸= 0 for some λj = λ1, we can simply
define ∥d(−λ1)∥ = +∞).

Now we can make the following two assumptions:

1. b ̸= 0. (which implies ∥d(λ)∥ is a monotone decreasing function on the interval [−λ1,∞))

2. The optimal d∗ satisfies ∥d∗∥ = ∆.

We consider two cases under the above assumptions

• Non-degenerate case (easy case)

1. If qTj b ̸= 0 for some j such that λj = λ1. Then

lim
λ→−λ+

1

∥d(λ)∥ = +∞

and
lim

λ→+∞
∥d(λ)∥ = 0

Therefore there must exists λ∗ ∈ (−λ1,∞) such that ∥d(λ∗)∥ = ∆.

From equation (9.3), (λ∗, d(λ∗)) satisfies optimal condition (9.2a). Therefore it is an optimal pair.
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Figure 15: Non-degenerate case: part 1

2. If qTj b = 0 for all j such that λj = λ1 and ∥−d(λ)∥ > ∆. (In this case d(λ) =
∑

j:λj ̸=λ1

qTj b

λj+λqj so

d(λ) is well defined at −λ1)

Again limλ→+∞ ∥d(λ)∥ = 0 and there must exist λ∗ ∈ (−λ1,∞) such that ∥d(λ∗)∥ = ∆ and it is
easy to check the pair (λ∗, d(λ∗)) satisfies all the three optimal conditions.

Figure 16: Non-degenerate case: part 2
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• Denegerate case (hard case)

– If scenarios in the non-degenerate case do not happen, then we have qTj b = 0 for all j such that
λj = λ1 and ∥d(−λ1)∥ ≤ ∆.

In this case, we claim the optimal multiplier λ∗ = −λ1, i.e., there exists some d∗ such that
(−λ1, d

∗) is an optimal pair.

Suppose the claim is not true, then λ∗ > −λ1 (from the optimal conditions, the optimal λ∗ must
be in the interval [−λ1,+∞)) which implies B + λ∗I must be positive definite. From the first
optimal condition (B + λ∗I)d∗ = −b, we have

d∗ = −(B + λ∗I)−1b = −
n∑

j=1

qTj b

λj + λ∗ qj = d(λ∗)

So d∗ is exactly d(λ∗)! Since d∗ is optimal, by assumption 2 we have ∥d∗∥ = ∆ = ∥d(λ∗)∥. But
we already know ∥d(−λ1)∥ ≤ ∆. So this is a contradiction to the monotone decreasing property
of ∥d(λ)∥ from assumption 1. Hence λ∗ > −λ1 can not happen, and we have λ∗ = −λ1. The
optimal d∗ is then given by

d∗ = −
∑

j:λj ̸=λ1

qTj b

λj − λ1
qj + τq1 (9.4)

where τ is computed from

∆2 =
∑

j:λj ̸=λ1

(qTj b)
2

(λj − λ1)2
+ τ2

It is easy to check −λ1 and d∗ in equation (9.4) satisfies optimal conditions (9.2c) and (9.2b). It
is left as an exercise to check d∗ does indeed satisfy condition (9.2a).

Figure 17: Degenerate case
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Remark 9.3. Note in the above discussion, we didn’t explicitly show λ∗ ≥ 0 as required by Theorem 9.1.
This may cause trouble if B ≻ 0 (−λ1 < 0).

In fact, if B ≻ 0, then we can find the unique optimal solution of the unconstrained optimization problem
which is d̂ = −B−1b. Since we assume there exists an optimal solution of the trust region subproblem on

the boundary, it must be the case that
∥∥∥d̂∥∥∥ ≥ ∆. Observe that d(0) = −B−1b, so ∥d(0)∥ ≥ ∆. Therefore

there must exist λ∗ ≥ 0 such that ∥d(λ∗)∥ = ∆.

To summarize, if B is positive definite, then we must have ∥d(0)∥ ≥ ∆, therefore the degenerate case can
not happen, and we are guaranteed to find λ∗ ≥ 0.

9.1.4 Lower and Upper Bound in the Nondegenerate Case

In the nondegenerate case, ∥d(λ∗)∥ = ∆ leads to a lower and upper bound for the multiplier λ∗. Since
λi + λ∗ ≥ λ1 + λ∗, 1 ≤ i ≤ n, we have

∆2 =

n∑
j=1

(qTj b)
2

(λj + λ∗)2
≤

n∑
j=1

(qTj b)
2

(λ1 + λ∗)2
=

∥b∥2

(λ1 + λ∗)2
.

Since λ1 + λ∗, it follows that

λ∗ ≤ ∥b∥
∆
− λ1 := λu

To obtain a lower bound, observe that

∆2 =

n∑
j=1

(qTj b)
2

(λj + λ∗)2
≥ 1

(λ1 + λ∗)2

∑
j:λj=λ1

(qTj b)
2,

which yields the relation

λ∗ ≥ −λ1 +
1

∆

 ∑
j:λj=λ1

(qTj b)
2

 1
2

:= λl

Hence λ∗ ∈ [max{0, λl}, λu]. We can then use bisection method or root-finding Newton method to solve for
λ∗

9.2 A Complete Algorithm

We now have a complete algorithm for solving the trust region subproblem.
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Algorithm 3: Trust Region Subproblem

Input: a symmetric matrix B approximating the Hessian and the gradient vector b, trust region radius
∆.
Output: optimal solution d∗

if B is positive definite, and ∥d∥ =
∥∥−B−1b

∥∥ < ∆ then
return d∗ := −B−1b

else
Compute the minimum eigenvalue λ1 of B and corresponding eigenvectors qj .
if qTj b = 0 for all j : λj = λ1 and

∥∥(B − λ1I)
†)b

∥∥ ≤ ∆ then

d∗ := −(B − λ1I)
†b+ τq1

where τ is computed from

τ2 = ∆2 −
∥∥(B − λ1I)

†b
∥∥2

return d∗

else
Use Newton root-finding method or bisection method to find λ∗ ∈ [max{0, λl}, λu] such that∥∥(B + λ∗I)−1)b

∥∥ = ∆

Compute
d∗ := −(B + λ∗I)−1b

return d∗;
end

end

9.2.1 Implementation

For a practical and efficient way to implement the Newton root-finding method, please see Algorithm 4.3 on
Page 87 in Numerical Optimization (by Jorge Nocedal and Stephen Wright).

In Algorithm 3, (B−λ1I)
†) is the (Moore-Penrose) pseudo-inverse of (B−λ1I). For the definition and how

to compute the pseudo-inverse, see the link Pseudo-inverse Python or Pseudo-inverse MATLAB

9.3 Convergence Analysis

Define the sublevel set S as
S = {x | f(x) ≤ f(x0)}

and define a neighborhood of this set by

S(R0) = {x | ∥x− y∥ < R0 for some y ∈ S}

where R0 is a positive constant.

To guarantee the convergence of trust region method, we don’t need to solve the trust region subproblem
exactly, specially, we require that

m(0)−m(d) ≥ c1(m(0)−m(d∗)) (9.5a)

∥d∥ ≤ γ∆ (9.5b)

where d∗ is an exact solution of the trust region subproblem, d is an approximate solution of the trust region
subproblem, c1 ∈ (0, 1] and γ > 0
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THEOREM 9.4. Let ∥Bk∥ ≤ β for sine constant β, f is bounded below on the level set S , ∇f is
Lipschitz continous in S(R0) for some R0 > 0 and f is C2-class function in the sublevel set S. Suppose that
Bk = ∇2f(xk) for all k, and that the approximate solution of the trust region subproblem dk satisfies (9.5)
for some fixed γ > 0. Then

lim
k→∞

∥gk∥ = 0.

If in addition, the sublevel set S is compact, then the sequence {xk} generated by the trust region method
has a limit point x∗ in S at which the second order necessary conditions for local optimal solution hold.

Proof. We omit the proof, for a detaled proof, see More and Sorensen, Computing a trust region step, SIAM
Journal on Scientific and Statistical Computing (1983).
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10 Theory of Constrained Optimization

A general formulation for constrained optimization problem is

min f(x)
s.t. ci(x) = 0, i ∈ E

ci(x) ≤ 0, i ∈ I.
(10.1)

DEFINITION 10.1. (Active Set)

The active set at any feasible x is defined as follows

A(x) = E ∪ {i ∈ I | ci(x) = 0}

10.1 Examples

Consider the following two-variable problem

min x+ y
s.t. x2 + y2 − 2 = 0

(10.2)

The optimal solution x∗ = (−1,−1)T .

At the solution x∗, there is no direction to move that stays feasible while decreasing the objective function
f , which gives the following condition

∇f(x∗) = −λ∗
1∇c1(x∗)

for some nonnegative λ∗
1.

By introducing the Lagrangian function

L(x, λ1) = f(x) + λ1c1(x)

Noting that
∇xL(x∗, λ∗

1) = ∇f(x∗) + λ∗
1∇c1(x∗)

The above condition is equivalent to
∇xL(x∗, λ∗

1) = 0

This is called stationary condition of the Lagrangian function for constrained optimization problem. The
scalar quantity λ1 is called a Lagrange multiplier for the constraint c1(x) = 0

The stationary condition is necessary (under some assumption which we will see later) but not sufficient. It
is derived from the fact that at the local optimal solution x∗, there is no direction to move that stays feasible
while decreasing the objective function f ,

Consider the following problem with one inequality

min f(x, y)
s.t. x2 + y2 − 2 ≤ 0

(10.3)

Case 1: f(x, y) = x2 + y2. The Optimal solution x∗ = (0, 0)T is in the interior. which gives necessary
condition

∇f(x) = 0
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Case 2: f(x, y) = x + y. The optimal solution x∗ = (−1,−1)T is on the boundary which gives necessary
condition

∇f(x) + λ1∇c1(x) = 0, for some λ1 ≥ 0

We can check in both case I and II, there exists some λ∗
1 ≥ 0 such that

∇xL(x∗, λ∗
1) = ∇f(x∗) + λ∗

1∇c1(x∗) = 0

and
λ∗
1c1(x

∗) = 0

In case I, λ∗
1 is just 0. In case II, we have λ∗

1 = 1
2 .

Condition λ∗
1c1(x

∗) = 0 is known as complementarity condition it implies

• (a) The Lagrange multiplier λ1 can be zero when the corresponding inequality constraint c1 is inactive.

• (b) If the inequality constraint c1 is active, the corresponding Lagrange multiplier can be nonnegative.

• (c) If ci is an equality constraint, the corresponding Lagrange multiplier can be negative, positive or
zero.

10.2 First Order Necessary Conditions (KKT) for Constrained Optimization

DEFINITION 10.2. (Lagrangian Function)

The Lagrangian function of the general constraint optimization problem 10.1 is defined as following

L(x, λ) = f(x) +
∑

i∈E∩I
λici(x)

DEFINITION 10.3. (Karush-Kuhn-Tucker Conditions (KKT Condition))

Given a point x and Lagrangian multiplier vector λ, the KKT condition for x and λ is the following:

∇xL(x, λ) = 0. (stationary) (10.4a)

λici(x) = 0, for all i ∈ E ∪ I (complementarity) (10.4b)

λi ≥ 0, for all i ∈ I (10.4c)

ci(x) = 0, for all i ∈ E (10.4d)

ci(x) ≤ 0, for all i ∈ I (10.4e)

Consider the following two examples
min x
s.t. −x+ 3 ≤ 0

(10.5)

min x
s.t. (−x+ 3)3 ≤ 0

(10.6)

It is obvious that these two problems have the same feasible region and objective function, therefore their
optimal solution should be the same, i.e., the optimal solution is x∗ = 3.
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However, one can check the optimal solution x∗ satisfies KKT conditions in Problem (10.5) but fails to
satisfy KKT condition in Problem (10.6).

The reason is that in Problem (10.5), the normal vector of the feasible region at the optimal point x∗ is d = −1
(or a positive multiple of d) and the gradient of the constraint at x∗ is also −1. However, in Problem (10.6),
the gradient of the constraint at x∗ is 0. The gradient does not capture the essential geometric features at
the optimal point

10.3 Tangent Cone and Constraint Qualifications

To address the above issue, we introduce the notion of tangent cone and linear feasible direction set.

DEFINITION 10.4. (Tangent Vector)

The vector d is said to be a tangent vector to x if there are feasible sequence {zk} approaching x and a
sequence of positive scalars {tk} with {tk} → 0 such that

lim
k→∞

zk − x

tk
= d

The set of all such d is called the tangent cone and is denoted as TΩ(x)

DEFINITION 10.5. (Linearized Feasible Direction)

Given a feasible x and the active constraint set A(x), the set of linearized feasible direction F(x)is

F(x) =

{
d

∣∣∣∣∣ d
T∇ci(x) = 0 for all i ∈ E

dT∇ci(x) ≤ 0 for all i ∈ A(x) ∩ I

}

THEOREM 10.6. (Geometric Necessary Optimal Condition)

Let x∗ be a local optimal solution of Problem 10.1. If f(x) and ci(x), i ∈ E ∩I are differentiable at x∗. Then

dT∇f(x∗) ≥ 0, ∀d ∈ TΩ(x
∗)

Proof. We prove it by contradiction.

Suppose there exists d such that d ∈ TΩ(x
∗) and dT∇f(x∗) < 0. Then there exists {tk}∞k=1 and {dk}∞k=1

such that x∗ + tkdk ∈ Ω where tk → 0 and dk → d.

Since ∇f(x∗)T d < 0, for sufficiently large k we have

f(x∗ + tkdk) = f(x∗) + tk∇f(x∗)T dk + o(tk)

f(x∗ + tkdk) = f(x∗) + tk∇f(x∗)T d+ tk∇f(x∗)T (dk − d) + o(tk)

= f(x∗) + tk∇f(x∗)T d+ o(tk)

< f(x∗).

This is a contradiction to the local optimality of x∗.
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10.3.1 Constraint qualifications

Constraint qualifications are conditions that make TΩ(x) = F(x).

DEFINITION 10.7. (Linear Independence Constraint Qualification (LICQ))

Linear independence constraint qualification holds if the set of active constraint gradient

{∇ci(x), i ∈ A(x)}

is linearly independent

Lemma 10.8. Let x∗ be a feasible point, then the following two statements are true:

1. TΩ(x) ⊂ F(x∗)

2. If LICQ holds, then they are equal.

Proof. 1. Let d ∈ Tω(x), then by the definition of Tangent cone, we have

lim
k→∞

zk − x

tk
→ d, lim

k→∞
tk = 0, zk ∈ Ω

which is equivalent to
zk = x+ tkd+ o(tk)

For i ∈ E , we have ci(x) = 0, therefore by taylor expansion of ci(zk) at x, we have

0 = ci(zk)

= ci(x) +∇ci(x)T (tkd+ o(tk)) + o(tkd+ o(tk))

= ∇ci(x)T tkd+ o(tk)

Divide by tk, we have
∇ci(x)T d+ o(1) = 0

Let k →∞, then o(1)→ 0, therefore ∇ci(x)T d = 0 for i ∈ E .

For i ∈ A(x) ∩ I, we have

0 ≥ ci(zk)

= ci(x) +∇ci(x)T (tkd+ o(tk)) + o(tkd+ o(tk))

= ∇ci(x)T tkd+ o(tk)

Divide by tk, we have
∇ci(x)T d+ o(1) ≤ 0

Let k →∞, then o(1)→ 0, therefore ∇ci(x)T d ≤ 0 for i ∈ A(x) ∩ I.

2. To prove the second item, we need the implicit function theorem (Theorem 10.9) from multivariate
calculus.

First we construct matrix of the gradient of the active constraints as

A(x∗) = [∇ci(x∗)]i∈A(x∗)
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Since LICQ holds, we have that the matrix A(x∗) has full row rank. Let Y be a matrix whose columns

form a basis for the null space of A(x∗), then we have A(x∗)Y = 0 and

[
A(x∗)
Y T

]
is a nonsingular square

matrix.

Let d ∈ F(x∗), and let {tk}∞k=0 be a sequence such that limk→∞ tk = 0. Define a system of equations
R : Rn × R→ R by

R(z, t) =

 c(z)− tA(x∗)d

Y T (z − x∗ − td)

 =

 0

0

 .

At t = 0 and z = x∗, the Jacobian matrix of R at this point is

∇zR(x∗, 0) =

[
A(x∗)
Y T

]
(10.7)

which is full rank by the construction of Y . Hence, according to the implicit function theorem, there
exists a continuously differentiable function g such that zk = g(tk) is a solution of equation (10.7) for
all values tk sufficiently small (k sufficiently large), therefore by the definition of R(z, t) we have

ci(zk) = tk∇ci(x∗)T d for all i ∈ E
ci(zk) = tk∇ci(x∗)T d for all i ∈ A(x∗) ∩ I

By the definition of F(x∗), we have tk∇ci(x∗)T d = 0 for all i ∈ E and tk∇ci(x∗)T d ≤ 0 for all
i ∈ A(x∗) ∩ I. Therefore ci(zk) = 0 for all i ∈ E and ci(zk) ≤ 0 for all i ∈ A(x∗) ∩ I.

Also we know ci(x
∗) < 0 for all i ∈ I\A(x∗). Since the implicit function zk = g(tk) is continuously

differentiable, for tk small enough, ||zk − x∗|| will be small enough such that ci(z
k) < 0 for all i ∈

I\A(x∗) as well.

So we have proved that for k large enough, the sequence {zk} is a sequence of feasible points. The rest

is to prove d = lim
k→∞

zk − x∗

tk
.

Using the fact that R(zk, tk) = 0 for all k together with Taylor’s theorem, we have

R(zk, tk) =

 c(zk)− tkA(x∗)d

Y T (zk − x∗ − tkd)



=

A(x∗)(zk − x∗) + o(||zk − x∗||)− tkA(x∗)d

Y T (zk − x∗ − tkd)



=

A(x∗)

Y T

 (zk − x∗ − tkd) + o(||zk − x∗||)

= 0

By Multiplying this expression by

[
A(x∗)
Y T

]−1

and dividing by tk, we obtain

zk − x∗

tk
= d+

o(||zk − x∗||)
tk
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from which it follows that lim
k→∞

zk − x∗

tk
= d. (why the limit can not be infinity or zero? ) Hence we

have d ∈ TΩ(x
∗) for any d ∈ F(x∗), the proof is complete.

Note in example (10.6), the tangent cone TΩ(x∗) at x∗ = 3 is {d : d ≥ 0}, however F(x∗) = {d | d ∈ R} at
x∗ = 3, so TΩ(x

∗) is strictly contained in F(x∗)

THEOREM 10.9. (Implicit Function Theorem)

Let f : Rn+m → Rm be a continuously differentiable (C1) function, and let x ∈ Rn and y ∈ Rm be the
unknowns of f . Let a ∈ Rn, b ∈ Rm be a point such that f(a, b) = 0⃗ where 0⃗ is a vector of zeros. If the
Jacobian matrix of f in terms of y is a full rank matrix at (a, b), i.e., if

∂f

∂y
(a, b) =


∂f1
∂y1

(a, b) ... ∂f1
∂ym

(a, b)
...

. . .
...

∂fm
∂y1

(a, b) ... ∂fm
∂ym

(a, b)


is invertible.Then there exists an open set U ∈ Rn containing a and on open set V ∈ Rm containing b such
that for each xk ∈ U , there exists a unique yk ∈ V with f(xk, yk) = 0⃗. The (implicit) function g : Rn → Rm

defined by g(xk) = yk for all xk ∈ U is also a continuously differentiable function over U .

Remark 10.10. Note in example (10.6), the tangent cone TΩ(x
∗) at x∗ = 3 is {d : d ≥ 0}, however

F(x∗) = {d | d ∈ R} at x∗ = 3, so TΩ(x
∗) is strictly contained in F(x∗)

Lemma 10.11. (Farkas Lemma)

Let ai, i = 1, ..., p, bi, i = 1, ..., q be two group of vectors in Rn and c ∈ Rn. Then the following statement is
true:

There does NOT exist any d which satisfies the following conditions

dTai = 0, i = 1, ..., p (10.8a)

dT bi ≥ 0, i = 1, ..., q (10.8b)

dT c < 0 (10.8c)

if and only if there exists λi, i = 1, ..., p and µi ≥ 0, i = 1, ..., q such that

c =

p∑
i=1

λiai +

q∑
i=1

µibi.

Proof. If there exists λi and µi ≥ 0 such that

c =

p∑
i=1

λiai +

q∑
i=1

µibi.
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Then for any d satisfying (10.8a) and (10.8b) we have

dT c =

p∑
i=1

λid
Tai +

1∑
i=1

µid
T bi ≥ 0

Therefore the solution set of equations (10.8) is empty.

For the other direction, assume there does NOT exist λi and µi ≥ 0 such that

c =

p∑
i=1

λiai +

q∑
i=1

µibi.

Define

S = {z | z =

p∑
i=1

λiai +

q∑
j=1

µibi, λi ∈ R, µi ≥ 0}

then we have c /∈ S by assumption. It is easy to see that S is a closed convex set. Therefore by Hyperplane
Seperation Theorem, there exists a hyperplane dTx = α that separates c from S, i.e.,

∀z ∈ S, dT c < α < dT z

Since 0 ∈ S, we have
α < dT 0 = 0,

which means dT c ≤ 0. On the other hand, for any bi, i = 1, ..., q we have

∀t ≥ 0, tbi ∈ S.

Therefore
∀t > 0, tdT bi > α

Let t→ +∞, we have
dT bi ≥ 0.

Similarly, for any ai, i = 1, ..., p we have
∀t ∈ R, tai ∈ S,

therefore
∀t ∈ R, tdTai > α

Let t→ +∞ and t→ −∞, we have
dTai = 0.

Hence d is a solution of equations (10.8).

THEOREM 10.12. (KKT Conditions)

Suppose x∗ is a local minimizer of the constrained optimization problem (10.1) and f(x), ci(x), i ∈ E ∪ I
are differentiable at x∗. If

TΩ(x
∗) = F(x∗).

Then there exists Lagrangian multipliers λ∗
i , i ∈ E ∪ I such that (x∗, λ∗

i ) satisfy the KKT conditions (10.4).
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Proof. By the geometric necessary condition, and the fact TΩ(x
∗) = F(x∗), we have

dT∇f(x∗) ≥ 0, ∀d ∈ F(x∗)

which is equivalent to saying that the following setd

∣∣∣∣∣∣
dT∇f(x∗) < 0
dT∇ci(x∗) = 0, i ∈ E
dT∇ci(x∗) ≤ 0, i ∈ A(x∗) ∩ I


is empty. Therefore by Farkas Lemma the following condition holds

∇f(x∗) +
∑
i∈E

λ∗
i∇ci(x∗) +

∑
i∈A(x∗)∩I

λ∗
i∇ci(x∗) = 0

for some λ∗
i ∈ R, i ∈ E and λ∗

i ≥ 0, i ∈ A(x∗) ∩ I.

If in addition we define λ∗
i = 0, i ∈ I\A(x∗), then

∇f(x∗) +
∑

i∈E∪I
λ∗
i∇ci(x∗) = 0,

which is just the stationary condition in the KKT conidtions. Also for any i ∈ I, we have

λ∗
i ci(x

∗) = 0

Therefore the complementarity condition holds. Hence the KKT conditions hold.

10.4 Second Order Optimal Conditions for Constrained Optimization

DEFINITION 10.13. (Critical Cone)

Given the linearized feasible set F(x∗) and Lagrange multiplier vector λ∗ satisfying the KKT conditions.
We define the critical cone C(x∗, λ∗) as follows:

C(x∗, λ∗) = {w ∈ F(x∗) | ∇ci(x∗)Tw = 0, for all i ∈ A(x∗) ∩ I with λi > 0}

Equivalently,

w ∈ C(x∗, λ∗) ⇐⇒


∇ci(x∗)Tw = 0, for all i ∈ E
∇ci(x∗)Tw = 0, for all i ∈ A(x∗) ∩ I with λ∗

i > 0

∇ci(x∗)Tw ≤ 0, for all i ∈ A(x∗) ∩ I with λ∗
i = 0

THEOREM 10.14. (Second Order Necessary Condition)

Let x∗ be a local minimizer of problem (10.1), and TΩ(x
∗) = F(x∗). Let λ∗ be the corresponding Lagrangian

multiplier vector, and x∗, λ∗ satisfies the KKT conditions. Then

∀d ∈ C(x∗, λ∗), dT∇2
xxL(x∗, λ∗)d ≥ 0,
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Proof. The proof is omitted.

THEOREM 10.15. (Second Order Sufficient Condition)

Let x∗ be a feasible point of problem (10.1). If there exists Lagrangian multipliers λ∗ such that x∗, λ∗ satisfies
the KKT conditions, and

∀d ∈ C(x∗, λ∗), d ̸= 0, dT∇2
xxL(x∗, λ∗)d > 0.

Then x∗ is a strict local minimizer of problem (10.1). If the critical cone contains only the zero vector, then
x∗ is also a strict local minimizer.

Proof. We only prove the case where the critical cone only contains zero vector. The rest of the proof is
omitted which can be found in Theorem 12.6 in the book Numerical Optimization by Nocedal and Wright.

We prove the result by showing that every feasible sequence zk approaching x∗ has f(zk) > f(x∗) for all k
sufficiently large. (This would imply x∗ is a strict local minimizer, otherwise you can find smaller and smaller
neighborhoods Nt(x

∗)∩Ω of x∗ such that x∗ is not a strict minimizer, so you can find a yt in Nt(x
∗)∩Ω such

that f(yt) ≤ f(x∗). Therefore {yt} is a feasible sequence approaching x∗ but f(yt) ≤ f(x∗), a contradition)

Suppose this is not the case, then there exits a feasible sequence {zk} approaching x∗ with

f(zk) ≤ f(x∗), for all k. (10.9)

By taking a subsequence if necessary, we can assume there is a limiting direction d such that

lim
k→∞

zk − x∗

∥zk − x∗∥
= d, (Bolzano-Weierstrass Theorem) (10.10)

Clearly d ∈ TΩ(x
∗) and ∥d∥ = 1 so d ̸= 0. Since the tangent cone is always contained in the linearized feasibe

set, so d ∈ F(x∗). But the critical cone C(x∗, λ∗) only contains the zero vector by the assumption, we know
d ̸= C(x∗, λ∗). So the critical cone is strictly contained in the linearized feasible set, therefore we can identify
some index j ∈ A(x∗) ∩ I such that the strict positivity condition

λ∗
j∇cj(x∗)T d < 0

is satisfied. (If A(x∗) ∩ I = ∅, then we would have C(x∗, λ∗) = F(x∗)). For the remaining index i ∈ A(x∗),
we have

λ∗
i∇ci(x∗)T d ≤ 0.

From Taylor’s theorem and zk − x∗ = d ∥zk − x∗∥ + o(∥zk − x∗∥) by (10.10), we have for this particular
index j that

λ∗
jcj(zk) = λ∗

jcj(x
∗) + λ∗

j∇cj(x∗)T (zk − x∗) + o(∥(∥ zk − x∗))

= ∥zk − x∗∥λ∗
j∇cj(x∗)T d+ o(∥zk − x∗∥).

Therefore
L(zk, λ∗) = f(zk) +

∑
i∈A(x∗)

λ∗
i ci(zk)

≤f(zk) + λ∗
jcj(zk)

≤f(zk) + ∥zk − x∗∥λ∗
j∇cj(x∗)T d+ o(∥zk − x∗∥).

(10.11)

By Taylor’s theorem, we have

L(zk, λ∗) = L(x∗, λ∗) + (zk − x∗)T∇xL(x∗, λ∗) + o(∥zk − x∗∥)
= f(x∗) + o(∥zk − x∗∥) (stationary and complementarity conditions)

(10.12)
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Combining (10.11) with (10.12), we obtain

f(zk) ≥ f(x∗)− ∥zk − x∗∥λ∗
j∇cj(x∗)T d+ o(∥zk − x∗∥)

Since λ∗
j∇cj(x∗)T d < 0, we have f(zk) > f(x∗) for k sufficiently large, which is a contradiction to (10.9).

Therefore the case when critical cone contains only zero is proved.

10.4.1 Example

Example. Consider the following constraint optimization problem

min x2 + y2

s.t. x2

4 + y2 − 1 = 0

The Lagrangian function is

L(x, y, λ) = x2 + y2 + λ(
x2

4
+ y2 − 1)

The linearized feasible set is
F(x, y) = {(d1, d2) |

x

2
d1 + 2yd2 = 0}

Since there exists only 1 constraint and the gradient of the constraint is nonzero, LICQ holds and F(x) =
C(x, λ). The Lagrangian function is

L(x, y, λ) = x2 + y2 + λ(
x2

4
+ y2 − 1)

Hence the stationary condition gives
∂L
∂x

= 2x+
x

2
λ = 0

∂L
∂y

= 2y + 2λy = 0

If λ = −4, then y = 0 and x = 2,−2. If λ = −1, then x = 0 and y = 1,−1. So in total there are 4 KKT
points z = (x, y, λ)

(2, 0,−4), (−2, 0,−4), (0, 1,−1), (0,−1,−1)

We consider the first KKT point and the third one. Let z1 = (2, 0,−4).=, then

∇2
xxL(z1) =

[
0 0
0 −6

]
, C(z1) = {(d1, d2) | d1 = 0}

Let d = (0, 1) then
dT∇2

xxL(z1)d = −6 < 0

Therefore z1 is not local minimizer (local maximizer). Similarly, let z3 = (0, 1,−1), then

∇2
xxL(z3) =

[
3
2 0
0 0

]
, C(z1) = {(d1, d2) | d2 = 0}

Let d = (d1, 0) and d1 ̸= 0, then

dT∇2
xxL(z3)d =

3

2
d21 > 0

Therefore z3 is a strict local minimizer.
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10.4.2 Finishing the proof for the trust region subproblem

We now finishing the necessary part of Theorem 9.1

Proof. Recall the trust region subproblem is the following:

mind∈Rn c+ bT d+ 1
2d

TBd = m(d)
s.t. ∥d∥ ≤ ∆

First, if the optimal solution d∗ of the trust region subproblem is not on the boundary, then B has to be posi-
tive semidefinite (second order necessary condition for unconstrained optimization) and Bd∗ = −b(stationary
condition for unconstrained optimization). Therefore the pair (d∗, 0) satisfies conditions (9.2)

Now let’s assume ∥d∗∥ = ∆. We can assume the constraint is the following ∥d∥2 = ∆2.

It is easy to see that LICQ constraint qualification holds at d = d∗ since ∇(dT d−∆2) = 2d which is linearly
independent (only 1 vector). So KKT conditions hold at d = d∗. Therefore there exists λ∗ ≥ 0 such that

(B + λ∗I)d∗ = −b
λ∗(∥d∗∥ −∆) = 0

It remains to check B + λ∗I ⪰ 0. Since d∗ is a global minimizer, we have m(d) ≥ m(d∗) + λ∗

2 (∥d∗∥2 − ∥d∥2)
for any d such that ∥d∥ = ∆. Substitute the expression b = −(B + λ∗I)d∗ into this expression, and after
some rearrangement we obtain

1

2
(d− d∗)T (B + λ∗I)(d− d∗) ≥ 0 (10.13)

Since the set of directions {
w

∣∣∣∣ w = ± d− d∗

∥d− d∗∥
, for some d with d = ∆

}
,

is dense on the unit sphere, (10.13) suffices to prove B + λ∗I ⪰ 0.

10.5 Duality Theory

Given a general constrained NLP

(P )
p∗ := min f(x)

s.t. ci(x) = 0, i ∈ E
ci(x) ≤ 0, i ∈ I.

(10.14)

and the corresponding Lagrangian

L(x, λ, µ) = f(x) +
∑
i∈E

µici(x) +
∑
i∈I

λici(x)

where µi ∈ R, λi ≥ 0.

We call this problem as the primal problem.

We define the Lagrangian function as follows:

g(λ, µ) = inf
x∈dom(f)

(L(x, λ, µ))

We claim g(λ, µ) is a concave function. In fact,

−g(λ, µ) = − inf
x∈dom(f)

(L(x, λ, µ)) = sup
x∈dom(f)

(−L(x, λ, µ))
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Since L(x, λ, µ) is a linear function in terms of λ and µ, therefore is convex. We know pointwise supremum
of a family of convex functions is still convex by Proposition 3.17. So −g(λ, µ) is convex, therefore g(λ, µ) is
concave.

The dual problem of the primal problem is defined as

(D)
d∗ := max g(λ, µ)

s.t. µi ∈ R, i ∈ E
λi ≥ 0, i ∈ I.

(10.15)

Lemma 10.16. (Weak Duality)

The primal optimal value p∗ is greater or equal to the dual optimal value d∗. (p∗ ≥ d∗)

We say strong duality holds if the primal optimal value is equal to the dual optimal value. (p∗ = d∗). The
duality gap is defined as p∗ − d∗.

Strong duality connects the global optimal solution with the KKT condition.

THEOREM 10.17. Assume the domain of f is restricted to be an open set. If strong duality holds, then
any par of the primal and the dual optimal solutions must be a KKT point.

Proof. Let x∗ be a primal optimal and (λ∗, µ∗) be a dual optimal point. This means that

f(x∗) = g(λ∗, µ∗) (strong duality)

= inf
x∈dom(f)

(f(x) +
∑
i∈I

λ∗
i ci(x) +

∑
i∈E

µ∗
i ci(x

∗))

≤ f(x∗) +
∑
i∈I

λ∗
i ci(x) +

∑
i∈E

µ∗
i ci(x

∗)

≤ f(x∗) (λ∗
i ≥ 0, ci(x

∗) ≤ 0,∀i ∈ I)

Since f(x∗) = f(x∗), we conclude that the two inequalities in this chain must hold with equality. Therefore
we have the complementarity condition of the KKT condition.∑

i∈I
λ∗
i ci(x

∗) = 0

Also since

inf
x∈dom(f)

(f(x) +
∑
i∈I

λ∗
i ci(x) +

∑
i∈E

µ∗
i ci(x

∗)) = f(x∗) +
∑
i∈I

λ∗
i ci(x) +

∑
i∈E

µ∗
i ci(x

∗)

we conclude x∗ minimize L(x, λ∗, µ∗) over x in dom(f). Since dom(f) is restricted to be an open set, x∗

must be a stationary point of L(x, λ∗, µ∗), therefore, we have the stationary condition of the KKT condition,
i.e.,

∇f(x∗) +
∑
i∈I

λ∗
i∇ci(x∗) +

∑
i∈E

µ∗
i∇ci(x∗) = 0
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10.6 Convex Optimization Problem

Again consider the general nonlinear optimization problem:

p∗ := min f(x)
s.t. ci(x) = 0, i ∈ E

ci(x) ≤ 0, i ∈ I.
(10.16)

If the objective function f(x) is a convex function in the domain dom(f). The inequality constraint functions
are all convex functions, and the equality constraints are all affine functions. Then it is called convex
optimization problem

For convex problems, the KKT conditions are also sufficient for global optimality.

THEOREM 10.18. Given a convex optimization problem, if (x∗, λ∗, µ∗) is a KKT point, then x∗ is a
global optimum of the primal problem, (λ∗, µ∗) is a global optimum of the dual problem, and the duality
gap is zero.

Proof. Let x∗, λ∗, µ∗ be KKT points that satisfy the KKT conditions:

ci(x
∗) ≤ 0, i ∈ I

ci(x
∗) = 0, i ∈ E
λ∗
i ≥ 0, i ∈ I

λ∗
i ci(x

∗) = 0, i ∈ I

∇f(x∗) +
∑
i∈I

λ∗
i∇ci(x∗) +

∑
i∈E

µ∗
i∇ci(x∗) = 0

The first two equations state that x∗ is primal feasible. Since λ∗
i ≥ 0, L(x, λ∗, µ∗) is convex in x. The last

KKT condition states that x = x∗ is a stationary point of L(x, λ∗, µ∗). Therefore x∗ minimizes L(x, λ∗, µ∗)
over x. From this we conclude that

g(λ∗, µ∗) = L(x∗, λ∗, µ∗)

= f(x∗) +
∑
i∈I

λ∗
i ci(x) +

∑
i∈E

µ∗
i ci(x

∗)

= f(x∗)

This shows that x∗ and (λ∗, µ∗) has zero duality gap and therefore are primal and dual optimal.

For convex problems, we have an easy-to -check constraint qualifications, which is called the Slater condition.

DEFINITION 10.19. (Slater Condition)

Let Ω be the feasible region of a convex optimization problem. If there exists some x∗ ∈ Ω such that

ci(x
∗) < 0, ∀i ∈ I

Then we say Slater condition holds.
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THEOREM 10.20. If Slater condition holds for convex optimization problems, then TΩ(x) = F(x) for all
x ∈ Ω

Proof. Proof is omitted. (Theorem 12.5 in the book Numerical Optimization by Nocedal and Wright.)

THEOREM 10.21. For convex optimization problem, if Slater condition holds, then strong duality holds.

Proof. We assume the optimal value of primal problem is attained at some point x∗, then Slater condition
implies x∗ is a KKT point by Theorem 10.20. Also for convex problem, KKT point is a global optimum and
strong duality holds.

In the case of the optimal value is not attained, this is also true, the proof is omitted.

10.7 Different formulations of the primal yields different dual

The dual problem is not unique, in fact, for the same optimization problem (geometrically), one can write
down the primal problems differently, therefore the dual may have different formulations, and the duality
gap can be different.

Examples:
min x3 + y3 = f(x, y)
s.t. −x− y ≤ −1

x, y ≥ 0
(10.17)

where the domain of the objective function is the whole plane.

The optimal value of the primal problem is p∗ = 1
4 at x = 1

2 , y = 1
2 .

The Lagrangian dual function is the following:

g(λ) = inf
x,y∈R

x3 + y3 + λ1(−x− y + 1)− λ2x− λ3y,

which is equal to −∞ no matter what λ is. Therefore, the dual problem

max g(λ), s.t. λ ≥ 0

has optimal d∗ = −∞. Therefore strong duality doesn’t hold. This due to the fact that the objective function
is not convex.

Equivalently, the primal problem can be written as follows:

minx,y∈dom f x3 + y3 = f(x, y)
s.t. −x− y ≤ −1 (10.18)

where the domain of f is the non-negative orthant of x and y (x ≥ 0, y ≥ 0).

The Lagrangian dual function is the following:

g(λ) = inf
x≥0,y≥0

x3 + y3 + λ(−x− y + 1)
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Since λ ≥ 0, the minimum is attained at the stationary point, i.e., 3x2 − λ = 0 and 3y2 − λ = 0. By

substituting x = y =
√

λ
3 into g(λ) we have

g(λ) =
2λ

3

√
λ

3
− 2λ

√
λ

3
+ λ = −4λ

3

√
λ

3
+ λ

and max{g(λ), λ ≥ 0} = 1
4 at λ = 3

4 . Therefore p∗ = d∗ = 1
4 , strong duality holds. This is because the

objective function is convex at domain x ≥ 0, y ≥ 0, therefore this is a convex optimization problem. It is
easy to check Slater condition holds, hence Theorem 10.21 applies here.
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11 Algorithms for constrained optimization problem

11.1 Quadratic Penalty method for constrained optimization

Consider the following constrained optimization problem

min f(x)
s.t. ci(x) = 0. i ∈ E (11.1)

DEFINITION 11.1. (Quadratic Penalty for Equality Constraint Optimization)

Define the quadratic penalty function

PE(x, σ) = f(x) +
1

2
σ
∑
i∈E

c2i (x)

The parameter σ is called the penalty coefficients.

Algorithm 4: Quadratic Penalty Method

Input: σ0 > 0, x0, ρ > 1
while Stopping criteria not satisfied do

Solve xk+1 = argminx PE(x, σk) using xk as an initial point
σk+1 ← ρσk

k ← k + 1
end

THEOREM 11.2. Let xk+1 be the global minimizer of PE(x, σk), let σk → ∞. Then any accumulation
point of {xk} is a global minimizer of the constrained optimization problem (11.1)

Proof. Let x∗ be a global minimizer of problem (11.1). Then

PE(x
k+1, σl) ≤ PE(x

∗, σk)

which is equivalent to

f(xk+1) +
σk

2

∑
i∈E

c2i (x
k+1) ≤ f(x∗) +

σ

2

∑
i∈E

ci(x
∗) = f(x∗)

After rearrangement, we have ∑
i∈E

c2i (x
k+1) ≤ 2

σk
(f(x∗)− f(xk+1))

Let x̂ be any accumulation point of {xk}. Let k →∞, then σk →∞ which implies∑
i∈E

c2i (x̂) = 0

Therefore, x̂ is a feasible point. Also since f(xk+1) ≤ f(x∗) we have f(x̂) ≤ f(x∗). Therefore x̂ is also a
global minimizer.
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Consider the following inequality constrained optimization problem

min f(x)
s.t. ci(x) ≤ 0. i ∈ I (11.2)

DEFINITION 11.3. (Quadratic Penalty for Inequality Constraint Optimization)

Define the quadratic penalty function

PI(x, σ) = f(x) +
1

2
σ
∑
i∈I

c̃2i (x)

where c̃i(x) = max{ci(x), 0}

Note that h(t) = (max{t, 0})2 is differentiable with regard to t, therefore the gradient of PI(x, σ) exists. So
gradient descent method can be applied here.

Consider the following general equality and inequality constrained optimization problem

min f(x)
s.t. ci(x) = 0. i ∈ E

ci(x) ≤ 0. i ∈ I
(11.3)

DEFINITION 11.4. (Quadratic Penalty for Equality and Inequality Constraint Optimization)

Define the quadratic penalty function

PI(x, σ) = f(x) +
1

2
(σ

∑
i∈I

c̃2i (x) +
∑
i∈E

c2i (x))

where c̃i(x) = max{ci(x), 0}

11.2 Application to LASSO problem

LASSO problem is the following problem

min
x

1

2
∥Ax− b∥2 + µ ∥x∥1

The goal of LASSO is to solve the following Basis Pursuit (BP) problem

min ∥x∥1
s.t. Ax = b

We use a quadratic penalty term on the constraint to obtain

min
x
∥x∥1 +

σ

2
∥Ax− b∥2

Therefore when σ = 1
µ , LASSO problem is equivalent to the quadratic penalty subproblem of (BP) problem.
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11.2.1 Example of unstable solutions

Example.
min (x− 1)2 + (y − 1)2

s.t. x+ y = 4

Drawbacks of quadratic penalty method

1. As σ grows larger, it becomes much harder to solve the penalty function minimization problem.

2. Solutions becomes very unstable from ill-conditioning of the problem, resulting poor convergence as
we increase σ.
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11.3 Augmented Lagrangian Method for Constraint Optimization

The augmented Lagrangian method reduce the possibility of ill-conditioning by introducing an explicit
estimate of the Lagrangian multiplier.

Define
LA(x, µ, ρ) = f(x)−

∑
i∈E

µici(x) +
σ

2

∑
i∈E

c2i (x)

The idea is to alternatively update x and µi as we increase σ, so in the end, it converges to a stationary
point which is also feasible.

At step k by differentiating the augmented Lagrangian w.r.t x we get

∇xLA(xk, µ
k, σk) = ∇f(xk)−

∑
i∈E

[µk
i − σkci(xk)]∇ci(xk)

which suggests a formula for updating µi

µk+1
i = µk

i − σkci(x
k+1)

To compute xk+1, we compute
xk+1 = argmin

x
LA(x, µ

k, σk)

where the initial point is xk.

To update σk, simply compute
σk+1 = ρσk

where ρ > 1

Algorithm 5: Augmented Lagrangian method

Input: σ0 > 0, starting point x0, µ0, and factor ρ > 1, k = 0.
while Stopping criteria not satisfied do

Solve xk+1 = argminx LA(x, µ
k, σk) approximately using xk as an initial point

Set µk+1
i = µk

i − σkci(x
k+1)

Set σk+1 = ρσk

k ← k + 1
end

The convergence of Augmented Lagrangian method can be assured without increasing σ indefinitely. Ill
conditioning therefore is less of a problem than the quadratic penalty method. We have the following
theorem.

THEOREM 11.5. Let x∗ ve a local minimizer of (11.1) at which LICQ holds, and the second order
sufficient condition in Theorem 10.15 are satisfied for µ = µ∗. Then there exists a threshold σ̄ such that for
all σ ≥ σ̄, x∗ is a strict local minimizer of LA(x, µ

∗, σ)

Proof.
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11.4 Interior Point Method for Conic Optimization Problems

11.4.1 Interior Point Method for Linear Programming

Consider the following primal and dual linear program

(P )
min cTx
s.t. Ax = b

x ≥ 0

(D)
max bT y
s.t. c−AT y = s

s ≥ 0

with KKT condition (if and only if for optimality of LP)

Ax = b

AT y + s = c

xisi = 0, i = 1, ..., n

x ≥ 0, s ≥ 0

The (primal) interior point method assures the iterated points stay in the interior of the feasible region
(x ≥ 0) of the primal problem by introducing a barrier function as a penalty function

ϕ(x) = −
∑
i

log(xi)

Algorithm 6: Primal Interior Method for LP

Input: σ0 > 0, starting point x0 > 0 such that Ax0 = b, and factor 0 < ρ < 1, k = 0.
while Stopping criteria not satisfied do

Solve xk+1 = argminx{cTx+ σkϕ(x) : Ax = b} approximately using xk as an initial point
Set σk+1 = ρσk

k ← k + 1
end

The KKT condition of problem min
x
{cTx+ σkϕ(x) : Ax = b} is following

Ax = b

AT y + s = c

xisi = σk, i = 1, ..., n

x > 0, s > 0

Here x > 0 due the log function is defined over x > 0 and s > 0 due to σk > 0

Therefore as σk goes to zero, the KKT condition of the penalty problem becomes the KKT condition of the
original linear programming problem. Hence xk is converging to the optimal solution of the LP problem.

If we use the quadratic approximation of ϕ(x) at x = xk where xk is a feasible point from previous iteration,
we have

ϕ(x) ≈ ϕ(xk) + (x− xk)T∇ϕ(xk) +
1

2
(x− xk)T∇2ϕ(xk)(x− xk)

and A(xk) = b.

The KKT condition for the approximate constraint quadratic optimization problem is[
σk∇2ϕ(xk) AT

A 0

]
·
[

x− xk

y

]
=

[
−c− σk∇ϕ(xk)

0

]
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where

∇ϕ(xk) = −


1
xk
1

...
1
xk
n

 , ∇2ϕ(xk) =


1

(xk
1 )

2 · · · 0

...
. . .

...
0 · · · 1

(xk
n)

2


This is just a linear system which can be solved efficiently by Gaussian elimination. In fact, if we cancel s
in the KKT conditions, i.e.,

Ax = b
AT y + [σk

x1
, · · · , σk

xn
]T = c,

then apply first order Taylor expansion at xk, we obtain

Axk +A(x− xk) = b
AT y + σk(∇ϕ(xk)−∇2ϕ(xk)(x− xk) ≈ c

which is the same linear system as before and this is just one Newton root-finding step , therefore after a
few Newton root-finding steps, we can get a good approximate solution of the penalty subproblem.

11.4.2 From Interior to Vertex: Purification

When an interior solution is close enough to the optimal solution, we can switch to a purification procedure
to get an exact solution of a linear program whose objective value is not greater than the objective value of
the interior solution.

Algorithm 7: Purify an Interior Solution to a Vertex Solution

Input: A ∈ Rm×n such that rank(A) = m, c ∈ Rn, b ∈ Rm. An interior solution x∗ ∈ Rn

Output: x is a vertex solution. Let x = x∗.
for k = 1, ..., n−m do

Compute 0 ̸= d ∈ Null (A) such that cT d ≤ 0. (make sure objective value is non-increasing)
Find the maximum t ≥ 0 such that x+ td ≥ 0
Update x := x+ td (at least one more component of x becomes zero)
Find i such that xi = 0 (i should be different from the previous ones) and update

A :=

[
A
eTi

]
(ei is the ith unit vector)

end

11.4.3 Complexity of Linear Programming and Practical Implementation

Let L be the bit size of the input data from a LP problem. Let x1 and x2 be two vertices of the feasible
region, if cTx1 ̸= cTx2, then |cTx1− cTx2| > 2−2L. Therefore if we come within 2−O(L) of the optimal value,
then after purification, we get an exact optimal solution. In general, the complexity of linear programming is
O(n3.5L2) on a Turing machine (Karmarkar, A New Polynomial-Time Algorithm for Linear Programming,
Combinatorica 4, 1984). The first polynomial algorithm for linear programming is discovered by Khachiyan
using ellipsoid method in 1979, but it is not practical.

In practice, you can run an interior point method, and purify your solution to a vertex solution for every t
steps of iterations. Then check if the vertex is optimal, if it is optimal, then stop, otherwise continue the
interior point method.

11.4.4 General Conic Programming

The idea of interior point method for LP can be generated to more general conic programming problems

Recall K is a convex cone if K is convex, nonempty and x ∈ K,λ ≥ 0 =⇒ λx ∈ K.
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DEFINITION 11.6. (Conic Program)

A conic program is the following optimization problem

min cTx
s.t. Ax = b

x ∈ K

where K is a closed convex cone.

Three most common used convex cones are:

Rn
+ = {x ∈ Rn, x ≥ 0}

Cn+1
2 = {(y, x) ∈ R× Rn : y ≥ ||x||2}

Sn+ = {X ∈ Rn×n : X ⪰ 0}

The standard barrier functions used for the three cones are

• Rn
+ : ϕ(x) = −

∑
i log xi

• Cn+1
2 : ϕ(y, x) = − log(y2 − ∥x∥22)

• Sn+ : ϕ(X) = − log(det(X))

A framework for a general conic program is the following:

Algorithm 8: Primal Interior Method for Conic Programming

Input: σ0 > 0, starting point x0 ∈ int(K) (interior of a closed convex cone K) such that Ax0 = b, and
factor 0 < ρ < 1, k = 0.
while Stopping criteria not satisfied do

Solve xk+1 = argminx{cTx+ σkϕ(x) : Ax = b} approximately using xk as an initial point
σk+1 ← ρσk

k ← k + 1
end

84



.

12 Introduction to Neural network

The material for this section is from the paper Deep Learning: An Introduction for Applied Mathematicians
by Catherine Higham and Desmond Higham. The supplementary material and matlab files for this paper
can be downloaded here.

Figure 18: Neural network

A neuron network consists of L layers of neurons. The first layer is the input, the last layer is the output.
There are nl neurons at layer l.

The neuron k at layer l−1 are connected to neuron j at layer l by a weight W
[l]
kj . So at layer l, the associated

weight matrix is an nl × nl−1 matrix.

For neurons at layer l, we associate them with a vector b[l] which is called the bias. So b
[l]
i is the bias for

neuron i at layer l.

We use the sigmoid function to simulate the output of a neuron.

σ(x) =
1

1 + e−x

The sigmoid function approaches 1 as x→ +∞. It approaches 0 as x→ −∞. So it mimics the behavior of
a neuron in the brain-firing (giving output close to one) if the input is large enough, and remaining inactive
(giving output close to zero) otherwise.

The derivative of the sigmoid function has a simple form:

σ′(x) = σ(x)(1− σ(x))

For z ∈ Rm, σ : Rm → Rm is defined by applying the sigmoid function in the obvious componentwise
manner, so that

(σ(z))i = σ(zi)
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Let a[l] denote the output or the activation from neuron j at layer l. Then we have

a[1] = x ∈ Rn1

which is the input from a data point x. and

a[l] = σ(W [l]a[l−1] + b[l]) ∈ Rnl , for l = 2, 3, ..., L

where nl is the number of neurons at Layer l, W [l] is a matrix of nl−1×nl and W
[l]
kj is the weight from neuron

k at layer l− 1 to neuron j at layer l, bl ∈ Rnl is the bias vector at Layer l. L is the total number of layers.

The goal of a neural network is to minimize the cost function w.r.t to W and b.

Cost =
1

N

N∑
i=1

1

2
||y(x{i})− a[L](x{i})||

where y(x{i}) the label of data point x{i} and N is the number of training data points.

Since the cost is the summation of the cost from every data point, we may drop the dependence on x{i} and
simply write

C =
1

2
||y − a[L]||2

for one data point x and its label y

Let z[l] be the weighted input vector for neurons at layer l, then

z[l] = W [l]a[l−1] + b[l] ∈ Rnl

The output or activation from neurons at layer l is

a[l] = σ(z[l]), for l = 2, 3, ..., L

For computational purpose, we define δ[l] ∈ Rnl as

δ[l] =
∂C

∂z
[l]
j

for 1 ≤ j ≤ nl, 2 ≤ l ≤ L

12.1 Back propagation

Lemma 12.1. We have

• δ[L] = σ′(z[L]) ◦ (a[L] − y)

• δ[l] = σ′(z[l]) ◦ (W [l+1])T δ[l+1]

•
∂C

∂b
[l]
j

= δ
[l]
j

•
∂C

∂w
[l]
jk

= δ
[l]
j a

[l−1]
k

Proof. Here ◦ is the Hadamard product (componentwise multiplication). See Lemma 1 in the paper for the
proof. The proof is a straightforward application of chain rule.

The output a[L] can be computed from a forward pass through the network, by computing a[1], z2a[2], z3, a[3], ..., aL

in order. Then δ[L] is immediately available, Then δ[L−1], δ[L−2], ..., δ[2] can be computed in a backward pass.
Then we have access to all the partial derivatives. Computing gradients in this way is known as back
propagation.
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12.2 Stochastic gradient descent

After we compute the gradient by back propagation, we can run gradient descent method, i.e.,

W [l] ←W [l] − η
∂C

∂W [l]

and

b[l] ← b[l] − η
∂C

∂b[l]

Here η is the step size. In machine learning it is also called learning rate. Usually η is chosen as a constant.

In practice, there are a lot of data points from the training set. Therefore it is not efficient to compute the
gradient for all the data points. Instead, people often choose a set of k points randomly from the training
data set and do a few steps of gradient descent, then choose k points randomly again and do a few steps
of gradient descent. Repeating this process until certain stopping criteria are met. This is called stochastic
gradient descent method.
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13 Course review for final

• Psd and pd matrix, matrix and vector norms, pseudo inverse

• Convexity, strong convexity

• Coercive functions

• Unconstrained quadratic optimization (first and second order optimal conditions)

• Least square problem

• Line search algorithm (Armoji condition, Wolfe condition, back tracking) Gradient descent method,
Newton’s method

• Trust region method (easy case and hard case)

• Constrained optimization (KKT conditions, second order optimal conditions, constraint qualifications)

• Duality theory, convex optimization problems, Slater condition

• Constrained optimization algorithms (penalty method, log barrier penalty method, interior method for
conic programming)
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activation, 86

back propagation, 86
bias, 85

complementarity condition, 64
convex optimization problem, 75
convex set, 13
critical cone, 70

descent direction, 35
dual, 74
duality gap, 74

exact line search, 36

generalized inverse, 32
global minimizer, 5

implicit function theorem, 66
inexact line search, 36
infimum, 4

Lagrange multiplier, 63
Lagrangian function, 64
learning rate, 87
least squares, 29
level set, 16
Lipschitz continuous, 40
Lipschitz continuous gradient, 41
local minimzer, 5

M -strongly convex, 48
monotone gradient, 48

norm, 8

Optimal value, 4

p-norm, 8
primal problem, 73

Q-linear, 6
Q-quadratic, 6
Q-sublinear, 6
Q-superlinear, 6

Slater condition, 75
stationary condition, 63
stochastic gradient descent, 87
strict global minimizer, 5
strict local minimizer, 5
strong duality, 74
supremum, 4

trust region, 54
trust region radius, 54
trust region subproblem, 54
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